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The exceptional utility and performance of the sequential, linear,

unbiased, minimum variance estimator suffers severely in the presence of

dynamic model errors. This problem -- perhaps the greatest detriment to the

so-called Kalman filter algorithm -- is discussed in light of its divergent

effect upon the estimation process.

A number of optimal and suboptimal modifying techniques are described

which attempt to prevent this divergence. Extensions are developed resulting

in adaptive forms and a new algorithm is derived for sequentially estimating

the state noise covariance matrix. Performance of the techniques is

illustrated by their application to, (1) the terminal phase of an Earth

orbit rendezvous mission, and (2) the heliocentric trajectory determination

of a solar electric propulsion space vehicle. Numerical results indicate

that the model error difficulties can be sufficiently countered, with

particularly effective performance being supplemented by the sequential

state noise covariance estimator.
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Chapter 1

INTRODUCTION

1.1 Background and Scope

The first solution to the problem of optimally estimating the values

of a set of quantities from a large set of data is generally attributed to

Karl F. Gauss' method of least squares (1).* Although A. M. Legendre offered

an early published version (2) in 1806, Gauss provided the basic mathematical

derivation. Interestingly, the method was developed and applied to classical

problems of orbit determination. Nearly 170 years later, it is now used as a

fundamental technique in space vehicle tracking and modern orbit determination.

In fact, the wide applicability and use of least squares in all fields of

engineering is testimony to the genius and insight of Gauss.

Although intermittent developments of some importance occurred,

particularly the ideas of probabilistic approaches, it was not until after

the first decade of the twentieth century that the foundations of estimation

theory were extended at a level of significance parallel to Gauss'. R. A.

Fisher (3) introduced many of the terms used to characterize the performance

of estimators; his concepts and efforts provided fertile ground for further

developments and new approaches to estimation theory. In 1942, Norbert

Wiener, considered today as one of the world's leading mathematical analysts,

produced the so-called Wiener-Hopf integral equation. The solution to this

* Parenthesized numbers indicate references as enumerated in the
Reference section. When specific pages are referenced, they are separated
from the reference number by a comma. Thus (5, 10-12) indicates reference
5, pages 10 through 12.
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equation is a weighting function which, when combined with a linear measure-

ment, results in an estimate of the desired quantity which minimizes the

error in a mean-square sense (more exactly the Wiener-Hopf integral offers

a method for producing linear, minimum variance unbiased estimates).

Although Wiener's work is truly significant, the integral equation

is limited in its.practical application. With the growth of statistical

communication theory, Wiener's technique received wide attention. Several

attempts were made to improve and generalize the theory; however, none of

these increased its basic utility and applicability.

The development of the digital computer provided a practical alterna-

tive approach to extending the applicability of estimation theory. Rather

than attempt analytic extensions and solutions to the Wiener-Hopf integral

equation, R. E. Kalman and R. S. Bucy (4) derived a differential equation

from the Wiener-Hopf integral. The computational efficiency of the digital

computer made the numerical solution of the differential equation practical

and resulted in a widely applicable algorithm for providing linear, unbiased,

minimum-variance estimates. Today, particularly in navigation and guidance

applications, "Kalman Filtering" as it has come to be called, ranks next to

least squares in popularity.

In spite of the utility of the Kalman filtering algorithm, the tech-

nique suffers from a particularly severe problem known as divergence of the

estimate. It usually arises from the fact that for the state vector to be

estimated, the system dynamic model is incorrect. Operation of the Kalman

filtering algorithm in the presence of modeling errors produces estimates

which are essentially worthless: the estimated state is grossly in error.

Divergence of the estimate, perhaps the greatest detriment to the

Kalman filtering algorithm, has received considerable attention. As a result,



3

various techniques have been devised to compensate for modeling error. Such

techniques may be thought of as falling loosely into two major categories:

adaptive and non-adaptive methods. Non-adaptive methods generally attempt

to improve the estimation process by altering the filter structure in an a

prioi and thus suboptimal manner. They also include a pt.iotc approximations

to the actual modeling errors. Adaptive methods attempt to improve knowledge

of the dynamic model or to improve operation of the filter du.intg the estimation

process.

The basic objective of this study is to investigate the utility of a

variety of model error compensation techniques, both adaptive and non-adaptive,

and to compare the effectiveness of these methods. In the remainder of Chapter

1, the Kalman filter is introduced and its properties discussed. The model

error problem is illustrated by a simple example. A brief literature survey

of model error compensation techniques is also presented. In Chapter 2,

selected non-adaptive error compensation methods are presented and compared

analytically. In Chapter 3, various new and previously developed adaptive

methods are discussed. Chapters 4 and 5 illustrate the application of the

various techniques to selected problems, and Chapter 6 concludes the study.

1.2 The Kalman Estimator and Some of Its Properties

Many expositions of the Kalman filtering algorithm exist in the

literature, offering a number of unique, yet unifying approaches to the

theory (5, 195-209). Thus our purpose here is not to give a rigorous

derivation of the Kalman estimator. However, as a point of departure and

for the sake of consistency, a somewhat heuristic development will be

presented. Following this, some of the notable characteristics of the

algorithm will be discussed.



Before proceeding, an important preliminary must be treated. For a

given dynamic system, the problem is generally one of observing or measuring,

in a stochastic environment, some aspect of operation of the system, and

then treating the measurement output in a judicious manner in order to extract

specific knowledge of the system's performance. However, an important

distinction must be made concerning the measurement process. On the one

hand is the case where the measurement process is carried out continuously

in time; this is often found in analog computing applications. On the other

hand is the case where measurements are made at discrete points in time in

correspondence with digital computing applications. While formulations of

the linear, unbiased, minimum variance estimator are known for both cases,

widespread application of the digital computer focuses attention upon the

discrete formulation. In the subsequent developments we will be concerned

with this approach only.

Within this scope the problem may be stated as follows: (1) Given

a dynamical system modeled by the linear difference equation

Xk 'k,k-1 Xk-1 + k,k- Wk-.1)

where

xk = x(tk) is an n-vector of random state variables, and x =x(t )

is given;

@k,k-1 = (tk tk-1) is the nxn state transition matrix*, with . = I;

* The properties of the state transition matrix are well known. Some
of these are mentioned later.



wk = w(tk ) is an m-vector of random input disturbances with the

statistics

E Ik =0, Ek kj E I Xk_1 Wk = 0,

(6kj is the Kronecker delta; ( )T denotes transpose);

k,k-1= (t k  tk-1 ) is the nxm disturbance transition matrix; and

(2) Given the linear observation-state relationship

Yk = k k Vk (1.2. 2)

where

Yk Y(tk) is a p-vector of observations;

Hk = H(t k ) is a pxn mapping matrix;

vk = v(t k ) is a random p-vector of observation noise with statistics

E Vk = O0, E vk V = Rk 6kj E xk V = 0,

E JVk w T  = 0, for all k and j *;

(3) Find an unbiased estimate, k', based on the set, Vk' of k observation

vectors through time tk'

k - Y 1 Y, "" ... Yk

i.e., find k E x(tkk) with E l k} = xk

(4) Such that ^k is formed as a linear combination of the k observation vectors:

Xk = xk k-1 + Kk Yk" (1.2.3)

* If Qk and Rk are constant for all k, the corresponding noise processes

are wide-sense stationary.
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and such that the state error covariance

Pk (tk ) E {(. k -(k)(x k -Y )} (1.2.4)

at time, tk, based on Vk , is minimized. Note in (1.2.3) that k- is thek k k-1

estimate of Xk based on Vk and in this sense Xk is based on all of thek-1 k-1 k

elements of Vk. In other words, given (1.2.1) and (1.2.2), the problem is

to find Lk and Kk such that (1.2.3) is an unbiased, minimum variance estimate

of xk.

In order to aid the discussion, some notational simplifications are

made. In general, the notation

fkIk f(tk I k)

means the function, f, evaluated at tk, based on the knowledge of Vk . For

brevity we will simply equivalence this with the notation, fk When no

confusion exists, the subscript k will be eliminated altogether. Hence,

k,k-i (k k-1

k,k- 1 = k -1

x = x = x(t )

: xk  X Xk k = 2(tk l k

k klk xk-

X = Xk = kjk = x - X

Xk = kflk- = i -X

Q= k = Q(tk)

R = Rk = R(t k)

P = Pk = k = P(tk I Yk)

k r T  T
k = k-1 k Y l Ok-1 k-1 k-1 (1.2.51



L = Lk = L(k)

K = Kk = K(tk)

Proceeding, the requirement which must be satisfied if X^ is unbiased can be

obtained by using (1.2.1), (1.2.2), and (1.2.3) to form the state estimate

error, x, and then taking the expected value. Thus,

Xk - KS +w -L ~ -K _.
k k k k-1 k-1 k k-1 k k

k-i + k-1 k k-1 k 'k k-1 Hk rWk-1 k

E{k = xk -E{ = 0

=kx - L E{$ - K H Ox
k- k k-1 k k k-i

= [(I - KH) - L] xk-1 = 0 (1.2.6)

where use is made of the facts that E{Wkl} = 0 and E{vk} = 0. Satisfaction

of equation (1.2.6) leads to the requirement that

L = (I - KH) 0 (1.2.7)

and thus (1.2.3) becomes

x= (I- KH) 4 - + Ky
k k-1 k

= 0~k- + K(Yk - H xk-i (1.2. 8)

By using (1.2.1), (1.2.2), and (1.2.8) the state error and the state estimate

error covariance matrix can be obtained as follows:

X + r -K(H + H rw + )k k- k-1 k- k-1 k-i

= (I - KH)( k-i + Wk-1)- K Vk  (1.2.9)

P = E I = E{(I - KH)(( _ + r w ) •

(T + wT r )(T - H K ) - ( - KH)(~ + r w T) K -
k- 1  k- )(I - K k- k-K k

K T 0 T + WT rTP)(I HT K T + K v T
Vk 'k-i k-i k Vk
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Combining terms, and recalling that E{x 1  =, E{ 1 k } = 0,k-i k 0' {Xk-i Wk

E{wk vk 0 and E{Vk  k-= O (see page 4) one obtains

Pk= (I - KH) ( Pk T + k- r)(I - HT KT ) + K RK T  (1.2.10)

In view of the definition of P in equation (1.2.5),

P = (I - KH) P (I - H T KT ) + K RK (1. .11)

The first variation is now taken with respect to K.

,6P = (I - KHI) (-HT SK ) + K R 6KT + (I - 6KH) (I - HT KT ) + 6K R KT

(1.2.12)

Necessary and sufficient conditions that P be a minimum are that (1) 6P = 0

and (2) that the second variation of P be positive definite. Solving (1.2.12)

for K with 6P = 0 leads to

K = P HT(H PH T + R)- (.2.1)

For an arbitrary n-vector, s, the corresponding quadratic form for the second

variation of P is required to be

T 62P S = T 6K(H P H + R) 6 KT s > 0
(1.2.14)

Thus if P is positive definite, then the bracketed term in (1.2.14) must be

positive definite, and fulfillment of (1.2.14) guarantees the existence of

the inverse in (1.2.13).

With K given by (1.2.13) the updated state estimate error covariance

may be obtained by substituting for K in equation (1.2.11).

P= (I -KH) (I - HT KT) + K R KT

=P- K HP -PH T KT + K(H HT + R) KT

=- -KH T- H H T K T + 7 HI (Ii HT + R)-1 (H PH T + R) K T

or

P = (I - KH) P (1.2.15)



which is the required covariance update equation.

The system dynamics are given exactly by equation (1.2.1). The

random input, w, is unknown; however, being probabilistic in nature, the

expected value of the equation may be taken conditioned upon the observations

up through time, tk. Thus

k k-1 k,k-1 k-Yk-1 + rk,k1 , wk-_ I Yk-1

with

E{w k Ik = E{wk } = 1

or

xk kk-1 k,k-1 k-1 k-1,k (1..)

Equation (1.2.16) provides the estimate of x at time tk based upon observations

through time tk-1 . It is also an unbiased, minimum variance estimate (5, 201),

and

k = P(tJklV k1) p k-1 T (1.2.17)

is the predicted value of the error covariance at tk given observations

through time tk- 1 (5, 201). Equation (1.2.17) follows directly by forming

the state estimate error covariance using equations (1.2.1) and (1.2.16).

Equations (1.2.16), (1.2.17), (1.2.13), (1.2.8) and (1.2.15) are the

equations of the classical linear, unbiased, minimum variance estimate. The

algorithm, denoted as Algorithm I, is summarized below.

Given: the a pkloi information o ' Yk and k = 1. Compute:

1. Xk k-i 4. k k + Kk(Yk - Hk k )

2. Pk k - +TPQ 1 5. Pk =(I- Hk) P
Pk =0 Pk-i + 1Qk-i k

3. Kk =Pk HkH Pk H +R) 6. kk+1, repeat
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Given:

Xao PO

max

k=1

k ; k-1

k k-1 T k-1

K=P T (HPHT +R)-1

x= x + K(y - H x)

P = (I- KH) P

k + 1 No Yes
Smax End

Figure 1.1 Kalman Filter, Algorithm I



The Kalman estimator above is based on linear system dynamics. It

has been applied successfully to many nonlinear problems in the following

manner.

Consider the n-element state vector, x(t), whose values at discrete

times are given by the nonlinear difference equation,

X(t) F[X(t ), tk] + F w(t ) ,  (1.2.181k k-1 k k,k-1 k-1

where w is a random input with properties as specified by (1.2.1), and F is

the corresponding disturbance transition matrix. Define a reference state,

X*(t). If F[X(tk_1), ti] is continuous for tk> t i > tkl , then a linear

approximation to F may be obtained by expanding in a Taylor series about

X*(tk-1) to obtain

aFk
F(Xk tk) F(Xk*,tk) + Xk--- (Xk-- Xk *)

k-1 k- k- k- ' (1.2.19)

kk7

k-1

into (1.2.18) we have, to first order in Xk_ -

F *
Xk = X + (X - X_*) +

k k - k,k-1 k- 1

Defining x. X - X .* and kk-I E Fk/aXk it, then obtain (1.2.1).

Xk = kk-i Xki + Fkk-i Wki (1.2.1)

A similar linearization is performed if the observation-state relation

is also nonlinear, but with additive noise, v(itk).

Y(tk) = G[X(tk), tk] + v(t ) (1.2.20)

t Note that this is the definition of 4 for the linear case as well.
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where Y(tk) is a p-vector of observations. Defining a nominal or reference

observation,

Yk* = G[Xk*" t k ] + v k , (1.2.21)

where the subscripts again denote values at the corresponding time, and

expanding in a Taylor series we have

G *k k k - Xk .. + (1.2.22)
Yk = Yk* + - (X k  Xk + +

k

or to first order in Xk'

Yk = Hk Xk k (1.2.23)

where

Yk = Yk - Yk*

Hk = G k */X k

Thus the optimal linear estimator previously presented may be applied to the

cases of nonlinear dynamics and observation processes. However, accurate

estimates of the deviation, ek' from the reference or nominal solution require

that the linearity assumption be valid. It is possible that large deviations

can violate the linearity assumption resulting in divergence of the estimate.

One method of reducing this possibility is to employ the so-called extended

Kalman filter in which a new reference is chosen at each observation. In

particular, after each observation is processed, the reference solution is

updated by setting the nominal equal to the new estimate:

Xk* = Xk = F(Xk- t) + (1.2.24)Xk t

After forming x *, k is set to zero so that = = 0. Then the next
k Xk k k+1

updated estimate, at tk+1, is found as

k+1 k+1 Yk+1

or, in terms of X,



X f=(X t ) + K y (/.2 2)
k+1 k' k+1 k+ k+J

The notation Xk is no longer necessary since it is identical to Xk. The

extended Kalman algorithm, Algorithm II, is summarized in Figure 1.2 for the

nonlinear problem.

Usually the difference equation (1.2.1) is obtained from the solution

to the linear vector differential equation

z(t) = A(t) x(t) + B(t) u(t) (1.2.27)

where u(t) is some input. For the nonlinear problem, A(t) = f(X , t)/X (t),

where x satisfies the nonlinear differential equation, X (t) = f(x ,t).

The solution to (1.2.27) is well known (39, 41-43) (15, 31-43) in the form

t
k

x(tk) = @(k , tk- ) x(tk-l) + @(t , T) B(Tr) u(T) d (1.2.28)
k k k-i

k-I

The state transition matrix, 4, satisfies the homogeneous differential equation

;(t, t.) = A(t) @(t, t.), (t., t.) = I (1.2.29)
3 7 3 3

D also has the following properties:

0(t., t )=(t , t .) ( t , t )1 k i 3 3 k

3 3

When u(t) is replaced by white noise, with E{u(t) uT(T)} =

U(t) 6(t-T)t, difficulties occur in attempting to evaluate the resulting

stochastic integral in (1.2.28). The problem arises from the fact that the

elements of white noise are uncorrelated in time, and hence are nowhere

continuous. A common approach to remedy this (44, 326-327) (39, 115-117)

is to select At _ t - t small compared to the system characteristic
k k-i l

6(t - T) is the Dirac delta.
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Given:

Xo" P o
k
max

tk

k-1

tk

Pk =f [A(t)P(t) +P~(t)AT (t)
tk-1 + B(t)Q)(t) ] dt

k=k+1 Yk = Yk - G[Xk tkST T

Kk =Pk Hk [Hk k Hk+Rkk k kk

End Xk Xk + Kk Yk

Figure 1.2 Extended Kalman Filter: Algorithm II
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response time, and approximate u(T) as a constant w(tkl) over At.*

In this case we define

tk

F(tk, tk- 1 ) H-f D(tk, T) B(T) dT (1.2.30)

k-i

This is the approach taken to obtain equation (1.2.1). An alternative method

is to define, formally,

dw- U(T) dT

and employ the definition of the It6 stochastic integral (5, 98) to obtain

tk

f 0(t ,d) B() dw B (k (1.2.31)
k k,k-1 k k k- 1

k- 1

In this case one cannot write the form k,_1 Wki. Another alternative, the

Stratonovich stochastic integral, yields the same result for this case

(5, 116-120). The most general consideration is simply to define

tk

W(tkl) - (tk, T) B(T) u(T) dT (1.2.32)
k-1

In this case, k,k-1 = I. The differences in these definitions are mani-

fested in the estimation process through the corresponding covariance terms.

Thus for (1.2.30) one finds

r E{w w rT =

tk tk

t (tk, T) B(-) dT E{uk_ 1 Uk-l} ft B (7) mT(tk, T) dTr (1.2.33)

k-1 k-1

For the It6 integral,

r E{w wT } FT = q 1 B E{(0 - w )() -W ) w B T  T
k,k-1 k k k- k k- k k,k-i

Carrying out the multiplication, this becomes

* A white Gaussian process may be shown to be the limit of a white
Gaussian sequence, e.g., (5, 83-85).
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FEw wT } r- ( B E (T (1.2.34)
k k k-l k-1

since E{w W = Q .
-7 i Ij

Finally, for (1.2.32)

FE{w wT } T = E{w w } =

tk

J (t k , T) B(T) E{u(T ) u (p) I BT() T(t k , p) ddp

k-1

But E{u(T) u (p)} = U(T) 6(T - p), and since (44, 332)

k t < T < tkY 6(T- p) dp =

tk-1 0, tk- 1 > T > t k

then
tk

E{W w T =f D(tk T) B) T() (tk, T) dT (1.2.35

tk-
1

Noting Q = E{w. wT } = E{w wT}, one finds for (1.2.33), (1.2.34), and (1.2.25),
1 3

respectively,

SQ = r U rT  (1.2.3a)

r Q FT = 2 B ' BT (T .2. 34a)

tk

r Q pT =Q f =B UB T D dT (1.2.35a)
tk-1

Thus, depending upon how one defines the stochastic integral in (1.2.28)

various forms may be obtained for F Q rT .

With the extended Kalman form, the state transition matrix is used

only in the prediction of the state error covariance matrix. It is possible

to eliminate the state transition matrix altogether by use of a differential

equation for the error covariance, obtained by a straightforward limiting
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process. First we write (1.2.17) such that the forcing term rQrT is in the

form (1.2.35). Letting T = tk t = tk-l, and defining At = - t, we have

T
P(T) = (T, t) P(t) ( (T, t) + ( f (T, s) B(s) U(s) B (s) T (T, S) ds

(i. .36)
Using the Taylor series expansion,

P(T) = [D(t,t) + $(t,t) At + ... ] P(t) [,(t,t) + $(tt) At + ... ]
T=t

[f (T,s) B(s) U(s) B (s) D (T,s) ds +

T=t

d f 0(T,s) B(s) U(s) BT (s) (T(T,s) ds At + ... ] (1.2.37)
dT t

where D(t,t) = d@(T,t)/dT evaluated at T = t. The first integral in (1.2.37)

is zero. Applying Leibnitz' rule to the second integral we have

T-t
d_ 4)(Ts) B(s) U(s) BT(s) (T(T,S) ds At =

T=t

B(t) U(t) B (t) At + f [ (T,s) B(s) U(s) BT(s) T(T,S)] ds At
t 

t

(1.2.38)

Noting that the integral here is also zero, and that $(t,t) = A(t), one

finds on substituting into (1.2.37) that

P(T) = P(t) + A(t) P(t) At + P(t) A T(t) At + B(t) U(t) B T(t) At +

Now, by definition P(tk_ ) = P(tk 1Yk- ), and P(tk) = P(tklV k-). Since no

new information is being added, then at t = tk-1 we may make the substitution

TP(t) for P(t). Then substracting P(t) from both sides, dividing by At and

taking the limit as At - 0, one obtains the differential equation

- - T T
P(t) = A(t) P(t) + P(t) A (t) + B(t) Q(t) B (t) (1.2.3)
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Since P is a symmetric nxn matrix, only n(n+l)/2 equations need to be

integrated. D is nxn and, in general, not symmetric, so a reduction in

numerical effort is obtained by integrating the appropriate n(n+1)/2

equations for P. On the other hand, depending upon the specific problem at

hand, it is often possible to reduce the number of equations in = A by

obtaining closed form solutions for some of the elements. Also, it has been

found that (1.2.39) can be a difficult equation to integrate numerically.

1.3 Properties of the State Error Covariance

This section deals with some characteristics of the state error

covariance matrix. We will not elaborate at length -- a number of investi-

gators have done extensive work in this area, notably Kalman. However, some

of the key properties are presented.

We first show that any covariance matrix is non-negative definite.

For a vector random variable, z, with mean, i, and covariance, z, consider

the quadratic form

q = aza (1.3.1)

where a is an arbitrary vector of constants. Since the expected value is a

linear operator,
T T T T

q = a E{(z-(z-) a E{a (z-) (z-) a} (1.3.2)

Defining the scalar

S - aT(z-p)

we have

q = E{s s T = E{s2 }  
(1. 3.3)

which is never negative. Thus Z is non-negative definite.

Next, positive definite bounds may be established for the error

covariance associated with the Kalman filter. In particular, Sorenson (7)
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takes a rather unique approach by decomposing the system, equations (1.2.1)

and (1.2.2) into two separate parts. One, denoted as p, has input noise,

but perfect measurements; the other, denoted as m, has no input noise, and

imperfect measurements. Thus,

m pXk k k

k Y k + k (1.3.4)

where the systems m and p are

m m
P k-1

m m
Y H k + k  (1.3.5)

k k-1 k-1
p:

Yk= Hk (1. 3.6)

Sorensen then discusses the covariance properties for these two systems

separately. For the noise-free plant, m, the observability matrix, defined

as

k
M T T -10 T _ H R H. 0.k,j ,j- i i i,j-i

i=j

is used to establish the positive definite property of the state error

covariance matrix. Specifically, a matrix inversion lemma, the so-called

Schur identity given in Appendix A allows (1.2.15) to be written as

P = [I-Kk k Pk = -m + HT R k -  (.3. 8)

where now vm= Dm ,i T since m is the noise free plant. Then,

-im -1 -im -T T -1P =, P , + H R H (1.3.9)k k,k-1 k-1 k,k-1 k k k
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The system is said to be observable on the interval [tj, tk] if the

observatility matrix M ., is positive definite. If this condition holds,

and Pm is also positive definite, then (1.3.9) can be written as

m -Im -1 T 10)P= [P +M ] 1k,O 0 k,1. k,O

where use is made of the fact that

- -im m yT 1
k k,k-1 k-1 k.,k-1

-1 -im -T
=~ P Q

k,k-i k-i k,k-1

-Im T
k,k-1 k-1 k,k-i

By arguments similar to the previous discussion, m is therefore positive

definite for all k, since the bracketed term in (1.3.10) is also. Additionally,

Sorenson shows that M may be described in a recursive fashion by

T T -1M M + H R Hk (1.3.11)
k,j Mk-l,j k,j-i k k k,j-1

and since the second term on the right is non-negative definite,

Mk, j - Mkl, j is also, thus allowing the conclusion, by (1.3.10), that Pm

is positive definite for all k > J.

Building on these facts, Sorenson also states the well known

characteristic that P generally tends to vanish for well-defined systems

with no input noise. First, the concept of q-stage observability is defined.

Given 1 < q < N such that t < t and t < tN , the system m is said to1- k-q+ k- N

be q-stage observable on an interval [t , tN] if and only if Mk,kgl is

positive definite for every tk. That this implies Mk,i - Mkq, is positive

definite may be readily seen by modifying (1.3.11) to obtain
T

k,1 k-q,l k-q,O k,k-q+i k-q,0 (11
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This follows by substituting Mk,k-q+1 using (1.3.7). Under q-stage

observability, (1.3.12) suggests that in some sense Mkj increases without

bound. Consider the spectral norm of M and M-:

k -1 kM ,i = A m. M l = 1/mn (1.3.13)k,l max k min

where Ak and Ak . are the maximum and minimum eigenvalues of kl . Nowmax min k,l

if Mki is q-stage observable,

Xk k-q k k-q
max max min min

with similar inequalities for the other eigenvalues. Then

Lim Lim k
Mk,l k max

and
Lim 1  Lim 1 (1.
k i Ik, k-e k.

min

Using this result together with (1.3.10), Sorenson realizes the

following conclusion: For a q-stage observable system, if IIMk 1I converges

to zero more rapidly than I kO 12 increases, then the error covariance Pm
k,O k

vanishes as k - o. To verify this we merely need to show that the norm of

the elements of (1.3.10) vanish. First, for no a ptioli information,
-im

P = 0. Thus*,

-1 T -lm -1 T
k Ml > [P +Al 2] 3 0k,0 k,1 k,0 k,0 O k,l k,O 1. 5)

and

Ikolj < I lO1 k,0 2 k (1.3.16)

which vanish as k + m if the original hypotheses are met. Further, as k - o,

(7.3.15) tends to equality with increasing accuracy. The implication is that

* A > B > C means that A - B is non-negative definite and B - C) is
positive definite.



for large k, Pi is essentially independent of Pm for q-stage observable

systems.

For system p, where the measurements are perfect, one is able to

conclude that the error covariance matrix is never positive definite. Using

(1.2.15) and (1.2.13),

k k l Kkk P

= H - H PP T [H P HT -1 H } P
k k k

=0 (1.3.17)

Thus if 1P were positive definite, Hk would have to assume the contradictory

state of having to be identically zero. Utilizing the gains, Kt and Zk
k k

which are optimal for each system, Sorenson then shows that a lower bound

on the total error covariance is given by

P > Pm Ip
k- k k

or

k >k,o [  + Mk,1 - k,O k (1.3.18)

Utilizing the gain Kks, which is suboptimal for the total system but may be

optimal for either (but not both) of the systems m and p, an upper.bound is

established as

k - k k

where Pms and PPS are the corresponding covariances. If Ks is chosen to be
k

Km (the optimal gain for system m), and used for both systems, then

P- < -,o .oS -m+ -1 kO + bs (1.3.19)
Pk - k,O 0 Mk,l k,O

But P m will generally increase without bound since noise is continually

being input to the system, and therefore, as Sorenson points out, (1.3.19)
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is an unsatisfactory bound. Note that in this case (1.3.17) generally will

not hold, since the gain is not the optimal for system p. If in fact,

rQkrT is positive definite, then

Pp = [I - ' (H TmHT + R)-1 H] P pm
k k

( I - Km H)[ Pkm + ATP + Q rFT]
k k-i

> Q r > -AkIT (1.3.20)
k-i k-i

This last is true since Pm and hence Km eventually vanish. Thus (1.3.18)

and (1.3.19) represent positive definite bounds upon the total system error

covariance, Pk

An alternate definition of observability requires that the information

matrix, Tk,j, be positive definite:
k

Tkj C H. R-i ( > 0, k > j (1.3.21)
Tkj E. i,k H R i,k

i=j

If this condition holds, the system (1.2.1, 1.2.2) is said to be completely

observable with respect to {yj, Yi "... yk}. Note that Tk,j is related

to the observability matrix by

k,j k,j-i k,j k,j- 3.

and related to the error covariance by

-Im T -lm
P = P + T (1. 3.k O,k 0 O,k k,l 3.3

This latter follows from (1.3.10). A recursion for T may also be obtained

using (1.3.11) and (1.3.22):
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T T T -1
T .= . M M 0 + H R H

k,j j-1,k k,j j-1 j-1,k k-1,j j-1,k k k k

T T T -1
M + H R H

k-1,k j-1,k-1 k-l,j j-1,k-1 k-l,k k k k

or

T T -1T = T +H - H k > j (1.3.24)
k,j k-1,k k-1,j k-l,k k k k'

A concept dual to that of observability is controllability. The

controllability matrix is defined as
k

A 0 r,- Q_ P D T (1.3.25)
k, k, ii- 1 k,i

The corresponding dynamic system is said to be completely controllable if,

and only if, Ak,o > 0 for k > 0.

Jazwinski (5, 234-243), drawing upon the work of Kalman, Sorenson,

and others, gives a comprehensive discussion of bounds and stability of

the filter equations. Extending the concepts of observability and control-

lability, Jazwinski defines the system (1.2.1, 1.2.2) as being uniformly

completely observable if there exist a positive integer, N, and positive

constants, a and 8, such that

0 < aof < T < BI
k,k-N -

for all k > N. Similarly the system is uniformly completely controllable if

0 < yI < Ak  < 6I
k- ,k-N -

where y and 6 are positive constants. Using these definitions, Jazwinski's

results are summarized in the following:

Lemma. If the dynamical system (1.2.1, 1.2.2) is uniformly com-

pletely observable and uniformly completely controllable, and if Po -  ,

then
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a) Pk is uniformly bounded from above,

b) Pk is uniformly bounded from below,

c)P > 0,

for all k > N. Further, the filter of Algorithm I is asymptotically stable;

that is,

I I(tk t0) < Cl exp[-c2(tk- t 0

for all tk> t 0 (cl and 02 are constants).

In (5, 244-251) Jazwinski also discusses error sensitivity. In this

latter regard, he proved the following:

Theorem. If P0 < P Q < Q , and R < Rk for all k, then0 0 k k k k

P < and P k< P k for all k.

The superscript, c, refers to the numerical values employed or computed in

the filtering algorithm. The non-superscripted quantities refer to the

actual or true values of the covariances. Note that the true values are

seldom known in practice. Hence, in light of this theorem we can enjoy the

confidence that if conservative values are selected for the covariances, then

the true error covariance is bounded at any time by the computed error

covariance.

1.4 The Problem of Modeling Errors

Up to this point in the discussion of Kalman filtering it has been

assumed that the system dynamics are known to within a degree of uncertainty

represented by the statistics associated with the state noise, w. If the

uncertainties in the model dynamics are purely random with accurately known

finite, bounded statistics, and more realistically if the uncertainties

are small with respect to the state values, then generally the assumed

dynamic modeling will yield good results. On the other hand, if there are
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modeling errors which contain unbounded time correlated components, or

dynamic biases as they are usually called, the estimation results based

on such erroneous models become worthless. In such cases, the system is

not uniformly completely controllable. In particular, the model errors

manifest themselves in the @-matrix which affects the predicted values of

the state, x, and error covariance, P. If the filter employs no process

noise covariance, Q, or only a constant Q, then as the estimation process

proceeds, the state error covariance usually* decreases and so, therefore,

does the gain, K. As the gain becomes smaller, the effects of the measure-

ments in contributing information become less and less. The effects of

modeling errors continue to grow, essentially no new information is added,

and the state estimate diverges from its correct value. A simple example

will be developed which will serve to illustrate these points. It is

derived from information given in reference (9).

Consider two spacecraft in orbit about the earth. Assume their

orbits are approximately circular and coplanar, and that the vehicles are

undergoing a rendezvous maneuver, and hence are separated by a distance of

only a few kilometers. Referring to Figure 1.3, let rk be the geocentric

position vector of the target vehicle and rh be the geocentric position

vector of the homing vehicle. Neglecting n-body and aspherical gravitational

effects, the equations of motion can be written as

i t = g(r P rt

= (h l1.4.1

* Recall that 11k,0112 in (1.3.16) must not increase faster than

1Mk11 1  decreases. A similar characteristic is required in the system

with process noise.



where ( ) = d( )/cr, p = gravitational parameter of the earth, and In is

the magnitude of r.

z

rt
P/

7h

Figure 1.3 Vehicle Position Vectors

Defining the range vector,

p = rt - rh (1.4.

and notin that Ipl << Irh or Irtl, one can expand about the target vehicle

position vector in a Taylor series to obtain

ag(r t)
g(rh)  = g(r t ) + art (rh - r t ) + E(1.i.3)

Neglecting c, which represents terms of second and higher order in p, and

using (7.4.1) and (J.4.!) leads to the following relation:

Dj(r
t )

Note that neglecting , as well as the higher order gravitational effects

Note that neglecting c, as well as the higher order gravitational effects
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has introduced errors in the dynamic model. However, for the time being

assume that (1.4.4) represents the true model, that the orbits are coplanar,

and that the target vehicle orbit is circular with the homing vehicle orbit

nearly so. Further, for purposes of developing.a simple navigation scheme

the possibly questionable assumption will be made that the homing vehicle

is closing at a constant rate, p, with respect to the target vehicle. Note

that p is the magnitude of the time rate of change of the range vector, p,

i.e.,

p pP

where p = /dt. Throughout the rendezvous maneuver, it is necessary to have

knowledge of and p; however, for simplicity in the illustration, only p will

be considered.

To obtain information about p a Doppler radar system is used to measure

the closure rate. Associated with this range-rate radar are uncertainties

assumed to manifest themselves as bounded, purely random errors, vk , in the

range-rate measurements. Assume the vk have the statistics

E{vk) = O, E{vk v) = R 6jk" R = constant

Making the following identifications with equations (1.2.1) and (1.2.2),

PO = P(O), k  k Hk 1, Yk = k + Vk

and assuming no state noise (Q = 0), then the Kalman estimation equations for

Algorithm I are

Pk = k-i

Pk =Pk-1

Kk = Pk[k + R]-1

k = k + Kk[yk -k]

Pk = [1 - k] Pk (1.4.6)
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Recall that yk is the measured range-rate at tk , and that k =k

Explicit expressions may be obtained for the above quantities in terms of

po' Po' and yk. In particular, the recurrence for Pk leads to

PoR
P = (1.4.7)

(mP + R)

and

P
K-
m (mP 0 + R) (1.4.8)

for m observations. Then for p ,
m V m

m Vk
S= +  (k + R (1.4.9)

P k=1 (k + R/P)

From equations (1.4.7)-(1.4.9), it follows that as m gets larger, the estimate

for p becomes insensitive to the observation residual since the variance andm

hence the gain are becoming smaller. The implication is that eventually a

point is reached where K is so small that taking further observations adds

essentially no new information about p. This is an acceptable (and desirable)

situation if no modeling errors are present, that is if the assumption about

a constant closure rate is valid.

To investigate this assumption further, consider equation (1.4.4) in

terms of the relative derivatives of p.

= p + 2 w x p + x p + c x (w x p) (1.4.10)

where w is the angular velocity of the line-of-sight, p, and ( ) is the time

derivative relative to the target vehicle. Using equation (1.4.4) one can

find

7 g(r
t)

S= r p - 2 wx p - x p - x (Wx p) (1.4.11)
t

From the first of (1.4.1),
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ag(r )t T
=grt -(

I  -3- r rt) (1.4.12)
Drt  - Irtl Ir [ 2  t

So,

T

rrt3  r t p

r r t l

and

T

P - (I t ) p -2 w x - x ( p) (1.4.1

If the rendezvous maneuver is restricted such that p maintains a constant

angle with respect to rt, then w is constant. Further, because the target

vehicle is in circular orbit,

= P9/ l k (1. 4. 15

where k is a unit vector perpendicular to the orbit plane. In view of this

restriction,.

T

_. . (I-3t t ) p - 2 x p - o x (W x p) (1.4.126)
IPI3  2rtl2

Now, take the scalar product of (1.4.16) with a unit vector in the p-direction

to get

Tcc T rt rt  T T
P = = P ( i 3 )p 2 x p - w x (w x p)

Irtl 3  p r1 2 Pt15

= 3 - - p + (p r) + 2  p (1.4.17)

since p (Wx p) = p (o x p) = w * (p x p) = 0, and pT [ x ( x p)] =

(W * p)2 W2 p2 = _W2 p2 But W2 p/lrtl 3 ; hence,
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3p1 T 2

Sirtl

Next,

sin (wt + E) Cos Wt

p p -cos (wt + rt = Irt sin wt

where E is a small, constant angle representing the deviation of p from

the local horizontal at the target vehicle (if E = 0, p and rt are perpen-

dicular). Then, since p rt is the scalar product of p and rt,

p rt = PrtI [sin (wt + e) cos wt cos (wt + E) sin ot]

= PIrtl [sin wt cos wt cos c + cos2 wt sin e -

cos wt sin wt cos c + sin2 wt sin E]

= pjrt sin E (1.4.19)

Finally, through first order terms, and for closure along the line of sight

at a constant angle, c, from the local horizontal,

= s p2 Irt 12 sin 2  = 3 p sin2
prrt Irtl

or

S- Y 2 p = 0, y = 3 sin' 2, a constant (1.4.20)

Thus, only in the special case where e = 0 is the assumption of a constant

closure rate valid (0 =0 to first order). The solution to (1.4.20) is

found to be

p = PO cosh yt + - sinh yt 1.4.21)

So,

= PO sinh yt + P cosh t (1.4.22)
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and it is seen that there is an unbounded growth in p. A non-dimensional

form of (1.4.22) is plotted in Figure 1.4.

Returning to the estimation problem, using the original model

(constant 6), the observation-state relation becomes

Yk =k + Vk = P Y sinh ytk + 0 cosh Ytk + Vk

and

k - k = P sinh ytk + po cosh ytk - k + Vk (1.4.23)

So the estimate becomes

1 (Po y sinh y + pO cosh k  + v
k k k + R/PO) 0  sinh Ytk P cosh k k k

(k-1) + R/P 0  - k

k + R/Pk (k + R/P O  +

R/P (P sinh ytk + P cosh yt) (1.4.24)
k + R/P 0 k 0 k

Forming the error, pk' by subtracting (1.4.24) from (1.4.22) gives

(k-1) + R/P - 7
RIP0 k

Pk k + R/P (P sinh ytk + P cosh ytk k) (k + R/PO)

(1.4.25)

From (1.4.24) one can see that as k increases, the additive effects of the

last term become less (since y << 1), and pk tends to a relatively constant

value. In (1.4.25), the term in square brackets tends to 1, and since pk

is approximately constant for large k, the hyperbolic trigonometric terms

eventually dominate, driving the error to intolerably large values. As

before, the computed variance given by (.1..) decreases to zero.

Consideration of state noise to represent dynamic model uncertainties

has been shown to have the effect of keeping the error covariance from
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- Closure, po < 0

--- Departure, Po > 0

Curves are labeled with
values of poy/lpo I

/2 /1 /.5 2

P . . .

P 1

0

-2

.5

44
.5 1 1.5 2 2.5

yt

Figure 1.4 Non-Dimensionalized Range Rate
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vanishing, and likewise, the gain. For the rendezvous example, let 1' in

equation (1.2.1) be the identity matrix. Further, let the process generating

wk be stationary so that the variance, Qk = , is a positive constant. Then,

P=P +Q
k k-1

For k = 1,

Po + Q
K 1 = P 1/[P1 + R] =

Po + Q + R

Assuming the initial estimate error is zero, the actual a pt,ro&i variance,

Po, is simply f. Then the simplification may be made that

R +Q _1 + f Q
KI R + Q 2 + f f

and

1+£ R
2+f

For k = 2,

P2 = fR 2 + J+Q 1= 2 + f + f) R 2 + 1

P2 1 2
K 2 = = (1 + 3f + 2)/(2 + f) 1 + 3f + f 2

P 2 + R (1 + 3f + f2)/(2 + f) + 1 3 + 4f + f2

3 + 4f + f2

For k = 3,

-3 [(1 + 3f + f )
(3 + 4f + f2)

1 + 6f + 5f2 + f3
3 +.4f + f2 R

K3 1 + 6f + 5f2 + f3 1 + 6f + 5f2 + f 3

1 + 6f + 5f2 + f3 + 3 + 4f f2 4 + 10f + 6f2 + f3

P [1 + 6f + 5f2 + f 3 ]
P 4 + 10f + 6f2 + f3
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For k = 4,

T4 = [1 + 10f + 15f 2 + 7f 3 + f ]
4 + 10f + 6f 2 + f 3

K [1 + 10f + 15f 2 + 7f 3 + f1

L5 + 20f + 21f 2 + 8f 3 + f 4 j

P4 = K4 R

Finally, for k = 5,

S= [I + 15f + 35f2+ 28f3 + 9f4 + f]
5 + 20f + 21f 2 

+ 8f 3 + f4

K [1 + 15f + 35f 2 + 28f3 + 9f 4 + f 5

6 + 35f + 56f 2 + 36f 3 + 10f 4 + f 5

Ps = Ks R

Examining these values leads, by induction, to the relationship

m m+k fk

m-k
K = (1.4.27)

E ( m+Z 
fk

k=O 

where = (a-b)! b!

the binomial coefficients, and f = Q/R. P and P are given as before.
m m

It is important to investigate the limit of Kk as k - m. Returning

to the recursive relations

Pk
K k

Pk + R

P = [I - K ] P

Pk+1 Pk + Q

then
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PR -
Pk + R

- k Q (1.4.28)

Pk +R

Now, as k - o,

P Ro _ + Q (1.4.28)
Poo 

RP R

where the notation P means kim

Solving for P

S= Q + /V Q2 + 4RQ (. )
S2 (1.4.30)

where the + sign is taken since it is required that P > 0. However,

K oo (Q + 'Q 2 + 4QR )/2

oo + R (Q + vQ2 + 4QR )/2 + R

S1 + / 1 + 4/f (1.4.31)

1 + / 1 + 4/f + 2/f

and therefore,

S+ V/ 1 + 4f R
.7 + 1 + 4/f + /f (1.4.33)

Noting that K < 1, and Po < R, one may write

Koo < K < 1

P_ <Pk <R (1.4.33)
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The fact that P and K do not vanish due to the presence of Q does

not in general prevent divergence of the estimate, when unbounded model

errors are present, but simply delays it. Forming the estimate for very

large k , one obtains approximately,

k [ - Koo] k + KO[poY sinh Ytk + Po c sh + I k]

S2/f Pk +
1 + /1 + 4/f + 2/f

1 + T7 +4 1f
I + 1 41f+ 2/f I ( p oY sinh yt k + po cosh Ytk + vk) (1.4.34)

The corresponding error is approximately

Pk /f 2 (Poy sinh Ytk + Po cosh ytk - pk1 + 71 + 4/f + 2/f

[ 1 + 1 + 4 /f ] k (1.4.35)
1 + /1 + 4/f + 2/f

Thus the non-zero steady-state gain, Koo, continues to provide information to

improve the estimate of p. Note that as Q, and hence f, becomes very large,

the error asymptotically approaches the error due to the observation noise.

However, after a sufficient amount of time, the estimate still diverges owing

to the unboundedness of the model error.

The question remains: "How does one compensate for modeling errors so

as to allow a workable estimation algorithm which provides accurate and useful

estimates?"

1.5 Literature Survey

The effects of dynamic model errors have been examined by a number of

investigators, among them Heffes (10), Schlee, ct ac. (11), Price (12),
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Huddle and Wismer (13), and Neal (14). Most of these investigations are

concerned primarily with performance degradation of the estimation process

(which is the Kalman sequential estimator in all cases), and offer equations

which provide a measure of the degradation. These equations are generally

based upon the error covariance and are structured in such a way that model

errors may be seen through their effects on the error covariance.

As mentioned in Section 1.1, model error compensation techniques may

be classed loosely as adaptive or non-adaptive. Techniques from both camps

may be further classed according to their basic approach to the problem. On

the one hand are techniques which simply alter the actual estimation or filter-

ing equations. These approaches generally attempt to maintain the error

covariance, and hence the gain, at a level which will continue to provide

corrective information for the state estimate. On the other hand are found

methods which attempt to improve knowledge of the dynamic model. The former

approaches usually aim at computational simplicity, but pay the price by

compromising optimality. The latter methods are usually more in keeping with

the optimality properties but generally are computationally more demanding.

The technique of representing modeling errors as white noise is an

easily implemented approach which is perhaps the most conservative. Numeri-

cally, it amounts to merely increasing k by adding the Qk-i matrix to (Pk-i DT

As pointed out in the last section, this merely delays divergence if the

errors are unbounded, but can be effective for small, bounded errors, i.e.,

if the system is uniformly completely controllable. The consideration of

state noise is employed so often that it has become part of the standard

linear, unbiased, minimum variance estimator (5, 194-209), (15). However, in

the face of incomplete knowledge of the dynamic model, Qk-1 must be guessed.
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Rather than arbitrarily select a complete matrix of values to be

added to the error covariance, an effective and simple method is simply to

scale the error covariance by a scalar. This has been done recently by Tarn

and Zaborszky (16). A scalar, s > 1, is selected and used to scale Pk after

each covariance update. In the application to an inertially navigated glide

vehicle, it was concluded that I < s < 1.5, and that satisfactory results

were obtained for s =. 12.

Fagin (17) introduced the concept of exponential age-weighting of the

observations. The effect is to downgrade the value of old observations so

that the most current information dominates the estimate. Fagin's development

is based upon a recursive least squares derivation, where

k [yi - Hi (i, k) xkTT- -1
[y, i [Yi - Hi Q(i, k) xk] (1.5.1)

is minimized with respect to xk. In the standard least squares approach,

T-1 = R- 1 . However, Fagin modifies R. as
1

Ri = exp [(tk - ti)/T] Ri, i > k (1.5.)

where T is an arbitrarily chosen time constant. The resulting estimation

equations have a form different from those of Tarn and Zaborszky; however,

they are equivalent (this will be shown in Chapter 2 along with certain

requirements on the scaling factor).

Miller (18) examines the behavior of the Kalman filter for continuous

and discrete time invariant systems with exponentially age-weighted observa-

tions. He derives equations for the filter eigenvalues to provide useful

guides for choosing the aging time constant, T.
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Schmidt (19), (20) offers two unique methods for overcoming model

errors. One utilizes a scalar parameter b to scale the optimum gain, H, with

an attendant increase in the updated covariance matrix. A second technique

adds a judiciously selected term to the Kalman gain with the corresponding

effect of an additive term to the updated covariance. In both methods the

values of the parameters involved are related to certain configurations of the

Kalman estimation equations. Both techniques effectively over-weight the more

recent data.

Limited memory filtering is a useful technique for counteracting model

errors. Here, only a limited batch of observations are employed. However,

the "batch" is updated in the sense that old observations are effectively

discarded as new observations are added. Hence the dynamic model is required

to be commensurate with the data only over a short time interval. While a

number of limited memory filters have been developed, one of the most efficient

and easiest to implement is due to Jazwinski (21).

Adaptive techniques form the majority of model error compensation

methods. Here attempts are made to estimate a parameter vector, a, whose

elements are unknowns in the model. These may include elements in P, H, Q,

or R. Mehra (22) places adaptive methods into four categories.

1. Bayesian

2. Maximum likelihood

3. Correlation

4. Covariance matching

Bayesian methods involve determining the a posteAiouL probability

density function, p(xk, alYk). Employing Bayes' Theorem,
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p(YVk a) p(a)
p(xk, alVk) = P(xkla, k) p(aYk) = p(xk, Y) p((1.5.3)

Since

P(Yk) = f P(Ykla) p(a) da,

then

p(Yk a) p(a)
P(xk, ajYk) = p(x k a, k) (1.5.4)

k p(VYk a) p(a) da

where A is the set of all a. Usually a recursive formulation is desirable.

Noting that

P(Vk) = P(YkYk_-1) P(Yk-_ )  (1.5.5)

substitution of (1.5.5) into (1.5.4) yields

'(YkIYk-l, a) p(aIVkl)
P(xk, aiVk) = P(Xkla, Vk) k- )  (1.5.C)

k 1xa fI (ykk-1 , a) p(al Vk-l) Ca

where p(Vk-7) has been divided out of the numerator and denominator. Now the

optimal estimate of xk is the conditional mean (22, XIV.1.1)

k-k= E{xk Yk} = f Xk PP(xk k) dxk
k

and for the problem at hand,

Xk k Xk p(Xka, Yk) dx p(alY k) da

or

Xk= f k ( a) (aYk) da(1.5. 7)

Using the quotient in (1.5.4) substituted for p(aIYk ) completes the formu-

lation of the algorithm.
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The obvious difficulties in (1.5.4) are the evaluation of the p(ajYk

integrals over A. Magill (25) develops the above algorithm approximating

the integrals by summations of discrete probability distribution functions.

Thus,

n

k sI xk(ai) P(ai Yk)

i=1

and

P(UklYk-Il ai) P(ai Yk-1 )  (1.5.)
P(aiyk) n

Ep (yk k-l a ) P(a jVk-1)

j=1

where (1.5.5) has been employed. This algorithm can be effective if the

dimension of a is not too large. To implement the procedure, the values of

the ai must be precomputed; therefore, large n increases the computational

load. Further, the appropriate probability density and distribution functions

must be assumed.

Maximum likelihood estimation is based upon maximizing a likelihood

function, L, formed as

L = en p[xk, aIYk]

with respect to the state, x, and the parameter vector, a. Taking partial

derivatives with respect to the appropriate elements produces a set of

usually nonlinear algebraic equations. Thus the disadvantage here is that

an iterative method is required to solve for the estimates, or else some

approximation must be made which yields suboptimal estimates. Further, the

density function must be known, a patioi. Alternately, using the marginal

density function, p(alYk ), it is sometimes easier to derive an estimator for a.
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The basic approach of correlation methods is to relate the auto-

correlation function of the observations to the unknown parameters. These

methods are normally applicable only to constant coefficient systems and

therefore will not be discussed further. The interested reader should see

(29) and (30).

Covariance matching techniques attempt to make the observed residuals

match their theoretical covariances through the appropriate choice of the

unknown parameters. Approximating the theoretical covariance of the residuals

by the sample covariance, one has

N7 V! m m

where v is the theoretical covariance, v is the sample variance, and v is the

vector of observation residuals. The limit, m, is chosen to provide a sem-

blance of smoothing. Equating v and V,

V=HT T .. 1)
Hk mPk-1 k T  k -+ R = Vk

Care must be taken to insure rank is consistent with the number of unknowns.

For example, if Q is being estimated, HP must be of equal or greater rank

than Q in order to obtain a unique solution for the elements of (. Alter-

natively, additional equations may be obtained for different times. For

elements of, say, 4, (1.5.10) is nonlinear, hence an iterative method is

generally required. In passing, it is mentioned that covariance matching

techniques appear to give fair results (24), and seem to be easiest to

implement.

The adaptive techniques discussed above have been used extensively to

estimate the state noise covariance matrix, as well as other parameters. We

have already mentioned Magill's use of the Bayesian approach to develop an
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adaptive algorithm for estimating parameters which are allowed to take on

only a finite number of values.

Maximum likelihood estimates of the state noise covariance are

obtained by Abramson (26), Sage and Husa (27), and Levy (28) to name a few.

Abramson provides a complete and detailed development of optimal and sub-

optimal methods for simultaneous estimation of the state and of the noise

statistics. While his approach offers estimates of the diagonal elements of

Q, Sage and Husa (27) have extended the approach to yield estimates of all

elements of Q, although proof of convergence is not established. Using the

Sage-Husa algorithm, Levy has constructed a reprocessing filter which period-

ically reprocesses the accumulated data to obtain increasingly improved

estimates of Q (and R). In the same work, Levy points out some shortcomings

of the Sage-Husa approach, and subsequently produces a corrected iterative

algorithm for simultaneous estimation of Q and R.

Mehra (29) uses the innovations correlation approach to provide

estimates of Q and R for time invariant systems. The method is limited to

cases for which the number of unknown elements of Q is less than n x p,

where n is the state vector dimension, and p is the observation vector

dimension. In cases where this restriction is violated, the Kalman gain

may be estimated directly, although this alternative utilizes an iterative

approach. In (30) Mehra applies the observations correlation approach to the

identification of time invariant system parameters.

Jazwinski (31) uses a maximum likelihood approach to develop a state

noise covariance estimator. The joint probability density function of m

residuals is maximized with respect to Q. For the case of one residual,

normally distributed, the result is identical with that for covariance match-

ing, One residual is not a meaningful statistical sample; however, using the



sample variance of a larger residual sample, Jazwinski has obtained

satisfactory results (24).

An effective approach to adaptively compensating for-modeling errors

is to consider the state noise as being correlated in time, and modeled by

the first order Langevin differential equation,

o(t) = w(t). + u(t) (1.5.11)

where C is a diagonal matrix of constants, and u(t) is a white noise process.

with statistics,

E[u(t)] = 0, E[u(t) u(s)] = U(t) 6(t - s)

By extending the state vector, x, to include the elements of w, the problem

resumes its original form with the only difference being a larger state

vector. The specification of C is generally not an easy matter; however, by

also including its elements in the state vector, the value of C may be

adaptively estimated. This approach has been used successfully by Ingram (32)

in representing the effects of time correlated random accelerations acting

on the Apollo spacecraft. Schutz (33) has used the same approach to account

for the effect of mascons in the lunar gravitational field. Tapley and

Hagar (34) have successfully utilized equation (1.5.11) as well as the second

order equation,

L(t) = C(t) + u(t) (1.5. 12.)

to represent time correlated uncertainties in the thrust acceleration vector

of a continuous low thrust, solar-electric spacecraft. The possibility of

utilizing higher order models to represent time correlated noise is also

indicated in (34).

A particular disadvantage of each of these techniques is that unless

the constant matrix, C, has some state noise variance associated with it,

it will settle to some constant value since its associated gain will vanish.
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As a result, unless the correlated noise represents the model errors exactly,

divergence of the estimate will eventually occur (35).

It is obvious that there is great latitude in selecting functional

forms to represent auto-correlated model errors, and these range from the

use of simple constants by Russell and Curkendall (36) to higher order

differential equations (37). An obvious problem is that of selecting the

correct functional form or structure. This problem has been touched on

briefly by Lainiotis (38), and will be considered further in Chapter 3.

1.6 Outline of the Investigation

As stated in Section 1.1, this study investigates the utility of a

variety of model error compensation techniques and provides a comparison of

the effectiveness of these methods. The particular techniques investigated

are selected from those mentioned in the previous section, along with several

extensions and new approaches. The study is limited to implementation using

the Kalman sequential estimators (Algorithms I and II) presented in section

1.2, and the error compensation methods studied are general enough to be

applicable to time varying as well as time invariant systems.

In Chapter 2 the suboptimal non-adaptive methods of the Schmidt

modifications and of age-weighting devices are presented. Also presented

in this chapter is Jazwinski's limited memory filter algorithm.

Chapter 3 is concerned with adaptive methods, both optimal and sub-

optimal. Jazwinski's adaptive technique for estimating the state noise

covariance is presented. Several extensions are given, and the covariance

matching technique applied to yield adaptive forms for the Schmidt and age-

weighting algorithms presented in Chapter 2. The briefly mentioned problem

of structurally adaptive filtering is considered, and results are obtained
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for certain restricted forms. A new method is developed for estimatinq the

state noise covariance matrix. The resultinq algorithm employs the linear

minimum variance sequential estimator to adaptively estimate the state noise

covariance elements for the case of linear observations. The same approach

is shown to be capable of modifying the error covariance elements directly.

Chapters 4 and 5 apply the previously presented algorithms to two

dynamic systems. The scalar rendezvous problem presented in section 1.4 is

used to provide tractable, closed-form solutions and to offer insight into

the nature of many of the methods. In Chapter 5.a second problem of a more

complex but realistic nature is investigated using the most promising

approaches indicated in Chapter 4. This concerns estimating the heliocentric

trajectory of a continuous low thrust, solar-electric spacecraft, subject to

errors in the thrust acceleration vector. A complete description of this

problem is given in Chapter 5.

Chapter 6 is a concise summary of the investigation and presents the

general conclusions and recommendations for further study.



Chapter 2

NON-ADAPTIVE METHODS

2.1 Age-Weighting of Data

The rationale for age-weighting the observation data to compensate

for model errors is this: The Kalman filter uses all the data as information

for obtaining an estimate. However, the dynamic model assumed in the process

is in error and therefore yields a reasonable approximation to the true

motion over only a finite interval of time. Therefore, attempting to make

the data consistent with an erroneous model over the total estimation period is

unreasonable over a long period. A logical alternative is to downgrade the impor-

tance of the older data. Fagin (17) does precisely this by minimizing LTk in

equation (1.5.1) where 1R = exp[(tk - tiJ/T] Ri. with r arbitrarily chosen.

The results are equations (2.1.2) with s = exp[(t - j/-].
k 2

For the derivation here, a slightly different and more direct approach

due to Tarn and Zaborszky (16) is given. Here, a general function, 8, is used

as the weighting factor instead of the special case of an exponential. Pro-

ceeding heuristically, it is noted that aging the old data (decreasing its

importance) will yield the same results as increasing the importance of the

more current data. This may be accomplished simply by scaling the error

covariance by s, with s > 1. Thus the error covariance and hence the gain

is increased so that more importance is attached to the more recent observa-

tions. The suboptimal covariance, denoted as pS, is sP with the Kalman

equations modified by simply substituting pS for p. Thus,

48
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PS = sP
k-1 k-1

- p T T
Pk = 0 Pk- + FQk'

xk k-1

- T - T -1K1 Pk H [IH  H + R -

k k k

k = xk Kk[k - H k]

Pk = (I - K H) 2

These are the results arrived at by Tarn and Zaborszky. We note in passina

that since their results contain both the additive state noise covariance and

the s-factor, there is some redundancy. The presence of the s-factor simply

slows the decrease in the error covariance, and the algorithm is therefore

suboptimal. Setting Q = 0 in (2.1.1) and using the definition of pS one

easily obtains Fagin's form,

- s T
k k-1

k k-1

K =P H [HP H + ]

k = xk + Kk[Yk - H Xk]

Pk = s(I - KH) Pk (2..2)

where s = exp [(tk- tk-1)/T]

The effects on the age-weighting algorithm for various values of ,

are now investigated. First, if s = 1, equations (2.1.1) and (2.1.2) are

just the Kalman equations of Algorithm I. If s is very large, the gain

approaches a value such that HK = 1, in which case only the most recent
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observation is considered in forming the estimate. This latter fact is seen

by premultiplying (1.2.8) by H.

To gain further insight into the algorithm, (2.1.2) is used to form

the variance between a perfect measurement and a computed measurement (for

a single observation), HPsHT . For a perfect observation, y = Hx; for the

computed observation, 9 = H'. Differencina these and taking the expected

value gives

y = y - = (x - X^) = H i

E[y ] = H Ps H

which represents a measure of the estimation performance for comparison with

the Kalman filter. For the case of scalar observations (to which the vector

case can always be reduced), (2.1.2) is used to obtain

SP HT [ HT (H PH IT)..HP = s HPH - (3. J. )

(H PH + R/s)

Introducing the definition

cE R/1 P HT > 0 (2.1.4)

equation (2.1.3) becomes

s T sRH H - (2.1.5)

For the optimal Kalman filter, s = 1, and

HPH T R (2.1.6)1+c

Forming the ration of (2.1.5) and (2.1.6),

sR 1 +c s + sc
s 1> 1, s > 1 (2.1.7)s+ R s+c- -

Thus, the measure of performance, given by HPSHT for age-weighting, is

bounded below by that for the optimal filter. To obtain an upper bound,

consider (2.1.5) in the limit.as s m. Employ L'Hospital's rule to find
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lim H PS HT = Lim R R (2.1.8)
s-*s 8 -> +

The values of HPkHT are then bounded according to

0 < R < H P s HT < R, s> 1 (.1.9)
1 +c- k

for k > I (after the first observation).

The variance of perfect measurements, HPH T , forms a useful common

denominator for comparison among various algorithms. Letting this quantity

be denoted by c, the corresponding relationship with - may be found. Again

considering the case of scalar observations, equation (2. J.; ) is manipulated

to give the following-sequence:

T T T T -1 -THPH = E =S[H PH - H P H(H P H + - H P H].
S

T -1 T ) T - -1
E(H H ) s[1 - H P H (HPH + R- )

T -1 R T R TE + ( H ) - = s(H PH + -) s H P H
T s

s E + (H H) - R =Rs

or

s H HT  1 - /R (2.1. 0)

This result is consistent with (2.1.9) as can be seen by solving (2.1.10)

for E and noting the results as s - 1 and s - -. Note that as c - R, s - o,

and the estimate depends more and more upon the latest observations.

Implementation of th.e standard age-weighting algorithm is straight-

forward (Figure 2.1), and may be done using either equations (2.1.1) or

(2.1.2).
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Given:

PO

s or E, k max

Kk = PH [HPH +-

k = + K[y k - Hx]

k= k+i

No 2 = k Yes
max End

Figure 2.1 Age-Weighted Data Algorithm
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2.2 Schmidt Suboptimal Filter: Scaling the Gain

Schmidt (19) considers modifying the gain term directly using a

scaling constant, b. The state estimate is then given by

Xk = Xk + b Kk[k - H k] (.2. 21)

and the corresponding error covariance can be found from

xk = Xk - xk = k - b Kk[Y k - H Xk] = x k - b KkH (xk + Vk]

Pk = [I - b Kk H] k[I - b Kk H]T + b2 K R Kk

= P -b K HP - bPHT KT + b2 K(H [IT + R) K'T

or

Pk {I - (2b - b2) Pk H [Hpk H + R]-1 H} k 2'" )

Proceeding in a manner similar to that in section 2.1, Schmidt forms
SP T = -H -T T+ ,) -1 H p 1T

Considering scalar measurements as before, Schmidt specifies liP HIT at some
k

acceptable value, c, and subsequently solves for b, yielding

b 1 (H HT + R) HT

(H P ) 2 (2.,.5)
(H HT 2

for which real solutions exist when

SHPH (2. .

IIIPH + R

and the positive sign in (2.2.5) is taken to insure b > 1.

The effects of various values of b may be seen readily by examining

equation (2.2.3).
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b = 1 Standard (optimum) Kalman gain and error covariance update

equation

1 < b < 2 A smaller than optimum term is subtracted from Pk in forming

the updated covariance, Pk

b = 2 Pk = Pk

b > 2 A positive term is added to Pk

Extending Schmidt's analysis, corresponding values of c are easily found to

be

S= T for b= 1

R H HT < c < H HT for 1 < b < 2
[HPH + R

E=H P T  for b= 2

s > H P HT  for b > 2

Further, values for b and c may be found which yield HK - 1, thereby

forcing the estimate to depend only upon the more recent observations. In

this case,

b H K = b HPH (HPHH + R)- < 1

or

H HT + R
b< (2.2. 7)

H P HT

Using (2.2.5) and (2.2.7),

H S +R > 1+ E(HPH +R) - R H P

SPHT (H PHT)2

one may solve for c to obtain

< (.2. F)



In view of (2.I.0), (2.2.8) requires that

R < < R (2.2.9)

R + H Pk H

or

RHK < < R (2.2.10

For estimates based upon only the current observation, equality must hold in

(2.2.8). It may be recalled that this agrees with result obtained for the

age-weighting algorithm.

Implementation of this algorithm is straightforward. A slightly

different approach involves using the following modified form of (2.2.;):

where HK < a < 1. The lower limit for a follows from the requirement that

b > 1. When applied to the Kalman gain, the following result is obtained:

K bH H T +-Ri T T T

and the covariance update equation (2.2.3) becomes

I' = Pi - [2a - (1 + ) 52 ] R IT ( 2.T )HPH T  '

Suppose a = /iu. From the limits on , the corresponding limits on are

seen to be those in (2.2.9). Thus, g = if results in estimates based upon

only the current observation.

The gain scaling technique using a constant value of b can lead to

some problems, and this will be shown specifically in Chapter 4. Another

alternative method is to determine b as

- H. 
,

[P PH
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The limini ts on (i correspond to the expected li imits for /, discus;sed earl ier.

In particular, = 0 gives b = .1 resulting in the optimal Kalman filter;

= 1 gives the value of b indicated by equality holding in (2.2.7), i.e.,

all information is obtained from the most recent observation. Employing

(2.2.14) in the gain and the error covariance update equation (2.2.3) gives

the following:

K'= b K

R HT T -1
= [1 + R] PH (H H T + R)-

[P H +HT I? -P H/1 H ] (H P H + ) ( .

2b - b2 =6 8 2 +2 2'2
'

SH T  HPH (HH T) 2 ( PH T)2

(2.2. 16)

2 R2 T HT
P = I - [1 - P H (HPH + R)- H} (2.2.17)

(H PH T)2

Forming HPH T yields

T (H PHT + 8 2 R)
HPH R (..18)

HPH + R

It has been indicated by Schmidt (20) that this method of determining b

yields estimation results identical with his additive gain term algorithm

discussed in the next section.

The gain scaling technique for constant b or (2.2.14) to determine c

is diagrammed in Figure 2.2. Figure 2.3 gives the logic flow for the modi-

fied gain scaling algorithm using equations (2.2.12) - (2.2.13). For this

modified approach, it is possible that a value of E might be chosen which is

initially less than the lower bound given by (2.2.9). This is not generally

desirable. The philosophy here is to operate with the ordinary Kalman filter
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Given:

x'o Po'

b or k, k
max

k=1

Xk Xk_1

k k-1

Tk = 4' k-1 0'

k = k+1 Corpute Yes R
b = 1 + ___

nP = [ (2bb 2 ) K< H] P

k

max Figure =2.2 Schmidt+b KSuboptimalk - H Filter: Gain Scaling

Figure 2.2 Schmidt Suboptimal Filter: Gain Scaling
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Given:

S 0

a, k
max

k=

- T

P =(D P, ck-k

Yes No

PH T Kk = P H T[H p + R

HPH

d = 2 a - (1 + R )(a)2

T-T

P -dHTHP k + K[yk - H x]
grk 2T

HPH

k = k+1 No max

Yen

Figure 2.3 Modified Gain Scaling Algorithm
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equations, and when HPHT = , switch to the suboptimal modified gain scaling

equations.

2.3 Schmidt Suboptimal Filter: Additive Gain Term

A second approach taken by Schmidt (19) is to add a judiciously chosen

term, L, to the optimal gain, K. This approach is possible only for scalar

observations. The suboptimal term is given as

RH
R L = T (2.3. 1)

(H H ) [HP H + R]
k

so that the actual suboptimal gain is found as

Mk =k + Lk

- T' -1 RH=P- H [H P H + R] + B (2.3.2)(H H ) [H P H + R]

If A is chosen as

[HP HT + R
R

then
LT

BA = , H
H HT

If one considers the estimate of x with no a pAtoti information, one obtains

xk Xk +Hy - H xk ]'k = 'k k - Xk]

where H# is the pseudo inverse (45, 82-89) of H.

#  HT

H HT

Then (2.3.2) is simply a linear combination of two gains: the optimal gain

for all the observations, and the gain for no a ptioAt information, given by

the pseudo inverse, H#.
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The updated covariance equation is also modified. Using (*:.; . ) to

form the state estimate,

Ak = xk + Mk k - H k](2. 3.3)

and subsequently the estimate error,

Xk k - Mk[H xk + vk] (2.3.4)

the error covariance is determined as

-~ T T T

E{ k k }  Pk k(I - M H) T + M R MT

=(I - M H) P - PH M + M(H P H + R) M

But since

-T T RH - H R T
M(H H + R) = (P H + H T ), P (I - M H) P + H M

H HT k k H HT (2. 3. 5)

Thus the updated covariance matrix is of the same form as the optimal equation

with the exception that the suboptimal gain, M, is used, and an additional

term is added. An alternative form of (2.3.5) may be found as

Pk = (I - X H) P + 82 R L H/(H HT) (2.3.6)
k k

This is the form derived by Schmidt.

Reasonable limits for B are readily established by considering HM,

formed using (2.3.2).

HM = HPHT(H PH + R)-1 + 8 R(H P HT + R)-1

= (H PH + [ R)(H H R)- (2.3.7)

As before, for HM = 1;, the most recent observation drives the estimate.

Hence using (2.3.7)

HM < 1 => <I

The lower limit on 5 is established heuristically by considering the fact

that 5 < 0 decreases the optimal gain, an effect which counters the idea of
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depending more on the recent observations. Thus limits on r are

0 <1 ~)

For 0 = o, M = K; for = 1 only the current observation is used to determine

the estimate.

It is interesting to extend Schmidt's analysis, and find the relation-

ship between b and (. Forming HPH from equation (2.3.6),

SHT = H H - (H P T ) 2(H HT  + R) - 1  2 2 T + )1

Denoting e = HPH , as in section 2.2, an expression for ( may be found.

E (H P 1 + ) = (H P HT) (II P H + R) - ( T)2 + B2 ip2

or

(H H + R) - H P HT R
R2

where the positive sign is taken in light of (2.3.8). Now comparing this

with the expression for b in section 2.2, b may be rewritten as

b = 1 + - T (2.3.10)
HPH

Equation (2.3.10) is identical with (2.2.14), and therefore provides the

link between the gain scaling and additive gain term algorithms. It should

be noted that this relationship is derived by forming HPH , and then developing

the equation based on this. By examining equations (2.2.15), (2.3.2),

(2.2.17), and (2.3.6) one will see that these gains and covariances differ

by the presence or absence of the error covariance matrix in the suboptimal

term. The case where it is present, i.e., the suboptimal gain term is given

as

- R HT

(HPH )(H PH + R)



is in fact more general. This is true because when the suboptimal gain term

is

BRHT

(H HT)(H PH + R)

any zero terms in H prevent contribution to the corresponding optimal Kalman

gain term. Usually this does not occur for the former case.

Note that in deriving (2.3.10), when HPHT is formed for each instance,

the differences in the suboptimal covariance terms disappear. Hence these

differences do not occur in (2.3.10).

Conditions for B may be established similar to those for b in section

2.2. In particular,

= 0 Standard (optimum) Kalman gain and error covariance update

equation

H- T A smaller than optimum term is subtracted from P in forming
0< <H PH k

the updated covariance, Pk

HPH HT
R k = k

H P HT A positive term is added to P< k

Employing (2.3.8) and (2.3.9), limits may be found for e.

T T
E(H P H + R) - HPH R

S= < 1

R2

or, using the inequality,

E < R (2.3.11)

which is just the condition established in section 2.2.

As in the previous section, real solutions require the radicand to

be positive; i.e.,
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(Ii -I 'l + R)

which is just the inequality (2.2.6).

The implementation of this algorithm is given in Figure 2.4.

2.4 Limited Memory Filter

The philosophy behind the limited memory filter is similar to that

of the suboptimal techniques presented in the previous sections. However,

rather than weight the data in some arbitrary sense, limited memory filters

"discard" old observations.

Jazwinski (21) develops a limited memory which is suboptimal only in

the sense that it does not take into account the information from all observa-

tions in forming the state estimate. However, the filter equations

developed are, in fact, optimal over the set of observations considered.

In other words, for some subset of the total observations, the limited memory

filter provides a linear, minimum variance, unbiased estimate of the state.

Jazwinski's derivation applies to the general, nonlinear case. However,

it requires assumption of the probability density function. He also shows

that the linear limited memory filter may be derived from least squares con-

siderations. Since concern here is with the linear problem, this approach

is sufficient for our purposes. The derivation is duplicated here.

Consider the estimate of the state at time tk based on observations

through time t . As defined in Chapter 1, this is denoted as m  The

least squares estimate of x at tk based on observations through time tk is

derived (5, 206) as follows: Form the performance index, Jk' as

J. (X - Xm T (X X p-
k m mm m m - +

k
F (.T -1S7(Yi - H x.) R iy - H (2.'.)

i--m+ li I i . 2 "
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Given:
Xo Po

3, k max

k=

S .k+1

k k-

k k-1

Mk = [P H B Rh HT/(H HT)](H HT + R ) -

Hr

Pk = (I - M H) Pk+ MT
HH

No kYes

Figure 2.4 Schmidt Suboptimal Filter:

Additive Gain Term
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Recalling that x k  k,m m'

k (k xklm k,m immi k,m +

(y. - H D xk) Ri (y. - H ik k) (2.4.2)
i=m+l i i,k . ,k

Further, define

Ym+1 Hm+1 m+1,k

YH 
m+2. m+2 m+2,k

k Hk

and

-1
I? I

- 1
m+11

m+2
-i =

Sk I(2.4. 3)

Then,

T -I T -1
Jk =(x k  Xklm klmXk - Xklm)+ (y - H xk)X R -y - H xk)

(2.4.4)

Next take the gradient of Jk with respect to Xk, and set it equal to zero.

-1 -T- -1 -Jk = Pklm(xk - km )  H R ( H k ) = 0 (2.4.5)

Solving for Xk X- kk we obtain,

or

T - -1 - 1xk[Pk TkT R Y + Pkm km] (2.4.6)
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The fact that 'kk = [ + H / - /]- follows from equation (1.3..

Notice that if there is no a ptioti information about xk then P = 0

and (2.4.6) reduces to the standard weighted least squares algorithm. In

this case, letting N = k - m, equation (2.4.6) is used to obtain *

XkT I -1 -1 -T - -1 -(

or

-T - -1 -
Xk (N) Pk (N) H R Y .

Now combining equations (2.4.6) and (2.4.7). one obtains the following

sequence:

xk k Pklk Pk(N) xkI(N) +Pkj XkI(

- 1  --1 -1-
k kXk Pk (N) xkI(N) km km

-1 -1
Xk (N) Pk (N)[Pk Xkk km klm] (.4.8)

with

-1 - 1  
. 4-1

Pkl(N) [ Pklk Pk .m]

The limited. memory filter equations described above are obviously

more complex to implement than the previously presented filtering algorithms.

Essentially two Kalman sequences are required to be run for each "batch" of

N observations, and three matrix inverses are required every N observations.

Further, the limited memory filter estimate is obtained only every NL

* Xk (N) is the state estimate at tk based on observations to tk, less

those to tm, i.e., on the batch of the last N = k - m observations. The

same meaning applies to the error covariance, Pk.(NkI (N)
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observations. This number may be increased, but only at the expense of a

larger number of inverses of Pkk' Pkjm' and Pk((N)"

It is possible to modify Jazwinski's algorithm in order to eliminate

one of the matrix inversions. By factoring out PkJk, equation (2.4.9) may

be written as

k (N) = k k Pkm kk . .10)

Also, solving (2.4.9) for Pkk and substituting into (2.4.8) yields

k 1-
"k I(N) x 'k k + k l(N) klm[Xkk Xkkl m]

Thus the inversion of Pk k has been eliminated, and (2.4. 10) and (..i. 1/,) are

the equations to be employed. It is, of course, necessary to obtain Ik k and

hence Pkk is required.

The limited memory filter is implemented as a sequential estimator.

Figure 2.5 diagrams the modified.procedure which uses (2.4.10) and (2.4.11).

The Kalman filter equations are run from k = 0 to k = m = N, processing obser-

vations and obtaining estimates in the usual .manner. This represents an

initialization phase. The values of Pmlm and .ml m are stored. The Kalman

equations are then run from k = m to k = m + N, also in the usual manner, and

the state transition matrix m is obtained using k+2,k = k+2,k+m+N,m k+2,k k+2,k+1 k+1,k
The predicted values, Pm+NIm and .m+Nl m are found using Pm+N,m and equations

(2.4.10) and (2.4.11) applied to obtain m+ and PNI The process

is then repeated (except for the initialization phase) using the limited

memory filter outputs as the inputs for the next cycle (from m = 2N to m = 3n).

It appears from examination of the equations for finding p(N

(2.4.9) or (2.4.11), that numerical problems could be encountered, particularly

where short word length computers must be used. Equations (2.4.9) and
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"iven:

Xo PO

max N

k O,m= N

k = k+-

rk k k-1 'k-1 k-1

k kJk-i = k-lk-

T T

kk

Kk Pkl( Pk HI kk j+

Frk 2= k + K (yk - H Xk)

l P, = (I - K H) -
Save f k

n mIm

?

Yes

m1km kk,m m m k,m

Pkm k,m Pmjm m k,m

max Pk I (N) k(I Pkk Pk m -1 - k Ik

-1

Xkjk ' k (N) k k kl(N)
End

Figure 2.5 Modified Limited Memory Filter
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(2.4.10) require computation of the inverse of the difference of the inverses

of two matrices of similar values.

It is possible to offset this state of affairs. An alternative due

to Jazwinski (5, 258), reduces the number of P-matrix inversions to one by

working directly with the inverses only. Equation (1.3.9) from section 1.3

provides the necessary recursion relation. Dropping the m-subscripts from

(1.3.9) one obtains at time tk, based on measurements to tk-l'

-1 -T -1 -1 T -1
P Pk- + H R H (2.4.12)kjk-1 = k,k-1 k-1 k-1 k,k-1 k k k

For prediction only, the information term, HT R 1 H, for time tk is ignored.

Thus at tk , based on measurements to tm,

- -1 -T -1 -1
km k,m mm k,m (2.4.1)

This, of course, requires taking the inverse of D. If P is symplectic*, its

inverse is readily obtained. Alternatively, instead of integrating $ = A D,

the.inverse may be found by direct integration. -1  is found as follows:

*-1 -

-1 -lA

-i 0=I

= _- A

It should be apparent that all the previously presented algorithms

may be implemented such that x and P are obtained by -integrating their

* An even-dimensioned matrix, D, is said to be symplectic if

T J 0 = J, where J = 0 I ]

1 -I 0

Post-multiplying by 0-1 and pre-multiplying by J gives

-1 = T
j -J J1
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appropriate differential equations. Similarly, differential equations may

be obtained for the prediction and update of - . First,

-1 p

-1 -=I-
P P +P P= 0

-1-1 * -1

and using equation (1.2.39) with Q = o, one obtains for the prediction,

P-l(t) = -P-l(t) A(t) - A(t) P-(t) (2.4.14)

The differential equation for updating P-1 may be found by applying a limiting

process to (2.4.12) similar to that used in obtaining equation (1.2.39).

First,

P- (T) = (T, t) P-(t) -t, t) + H T(T) R- (T) H(T)

= [-T(t, t) + *-T(t t) At + ...] p-1(t)

[p-1(t, t) + 2-T(t, t) At + . + HT(T) R-1fT) H(T)

Carrying out the indicated multiplication,

P (T) = P-l(t) - A T(t) P-l(t) At - p-l(t) A(t) + . + + HT(T) R-i(T) H(T)

Performing the limiting process requires subtracting P-1 (t) from both sides,

and dividing by At. However, when taking the limit as At - 0 the information

term becomes infinite implying that the observations are perfect (no observa-

tion noise). This is inconsistent with the postulated observation process,

hence we replace* R(T) with R(T)/At. With this change, the limiting process

is applied to obtain

P-l(t ) = -A T (t) p-1 (t) _ p-1 A(t) + HT(t) R-l(t) H(t) (2.4.15)

* Further rationale and a discussion of a white noise process as the

limit of a white noise sequence is given in (5, 83-84).
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with

-1 -1
P (O) =P

0

When the information term, H R- H, is added at discrete times, the approach

used is to predict to t = tk using (2.4.14) and then add the information

terms at tk' i.e.,

PkIk-1 = - [p-l(t) A(t) + AT(t) P- 1 (t)] dt
tk-

1

-1 -1 T -1 H 4.6)
kk k k-1 k k k

Reverting to the notation associated with the filter, there results

tk
PkIm= - -[mP(t t) A(t) + AT(t) P-(tltm)] dt (2.4.17)

m

k (N) p- j+ [P-1 (tltt. ) A(t) + AT (t) P-l (tjt.mJ dtj=m t.

+ H (j+1) R-l(j+1) H(j+1)

with

P-1 (t0) = 0 (2.4.18)

As before, it is not necessary to compute Pklk (although Pklk is required)

since equation (2.4.11) provides the limited memory estimate. Thus only one

P-matrix inversion is required: that of P-1(N) to obtain Pk(N ) . However,

the inverse of the state transition matrix is required, or else (2.4.17) and

(2.4.18) must be used. If D-1 cannot be easily obtained, the advantage of

this approach is somewhat decreased. The implementation of the alternate

limited memory filter is diagramed in Figure 2.6.
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Given:

k 0. m -N ' ,

max'

k = k+l

X klk-1 = k,k-1 xk-1k-1

Pk= Pkk-1 kk-lpk-llk-l ,k-1

-1 T T -1
P1 =0 K = P H (HP H + R)-

Save

3Im m ~kk = xk Y- H xk

mm kk (I K H e

Yes

Yes No

-ii-1 -T -1
No PIm = P)

mx H R H

? ma )k (Nklk klk(N Pklklk - km

Yes xk I k k I (N) k k k 1(N)

End

Figure 2.6 Alternate Limited Memory F:il.ter
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2.5 Summary

In this chapter the non-adaptive error compensation algorithms of

age-weighting, gain-scaling, additive gain term, and limited memory filter-

ing have been presented. Some of the original algorithms have been extended

to provide alternate forms, and relationships derived showing certain

equivalences among the first three.

Equations (2.1.1) give the basic age-weighting algorithm as conceived

by Tarn and Zaborsky, with Fagin's form given by (2.1.1).

Schmidt's gain-scaling algorithm is given by equations (2.2.1) and

(2.2.3). The relationship between the scaling factor, b, and E (=HPHT) is

given by (2.2.5). Modifications of the algorithm are given by the alternate

equations for determining b, equations (2.2.11) and (2.2.14).

The second filter design of Schmidt's adds a judiciously selected

term to the optimal gain, K. The resulting gain and covariance are given by

equations (2.3.2) and (2.3.5) or (2.3.6). The weighting factor, B, associated

with the additional gain term is shown to be related to E by equation (2.3.9),

and related to b by (2.3.7).

Jazwinski's limited memory filter is given by equations (2.4.8) and

(2.4.9) together with the Kalman filtering algorithm. A modification to the

basic limited memory filter eliminates one of the three matrix inverses, and

is given by (2.4.10) and (2.4.11). An alternate form employs the inverse of

the error covariance directly, thereby reducing the number of matrix inverses

to one, and is particularly advantageous if the state transition matrix is

symplectic.

In the next chapter we turn our attention to adaptive techniques,

both optimal and suboptimal.



Chapter 3

ADAPTIVE METHODS

3.1 Estimating the State Noise Covariance

When modeling errors are assumed to be represented as purely random,

uncorrelated noise, it is often a problem to determine the appropriate value

of Q, the state noise covariance. As indicated in section 1.5, there is a

preponderance of adaptive techniques which may be used to estimate the

appropriate noise covariances. Most of these, particularly Bayesian and

maximum likelihood approaches, have been thoroughly investigated (25), (26),

(27), (28). In this section an adaptive method due to Jazwinski is presented

which offers a reasonably simple and easily implemented scheme for adaptively

estimating the state noise covariance matrix. While the algorithm is derived

using a maximum likelihood approach, an interesting property is that in a

simplified form it becomes just the covariance matching technique.

Consider the following predicted residuals, called the innovations (23)

k = Y - Hk k = Hk Xk + Vk E{vk = O, E{vk j ) =k kj (3.1.1)

For simplicity, r k is assumed to be restricted to the scalar case. Forming

the covariance of rk one obtains

f-2 -- TE{ Hk Pk H +R (3.1.2)

Tsince E{xk  kT} = 0. P is given by equation (1.2.17). It can be shown (23)

that the innovations given by (3.1.1) are uncorrelated, i.e.,

;{rk r} = O, j > k,

74



75

and that rk is a Gaussian white noise sequence. Thus the joint probability

density function of the innovations sequence rk+ rk+2 rk+N is

P(rk+1' rk+2 ... k+N = P(rk+1) * P(rk+2)  ... P(rk+N)  (3.1.3)

where

p(r k) - H P H +k R
k+3 ff k+j k+j k+j k+

ek+j
P +1 (3.2 7)k+j k+j Hk+j k+ k+j

Suppose during operation of the filter equations (say, Algorithm I) that

t = tk, and the predicted values Pk+1 and xk+1 are to be computed. For i

predicted residuals the object is to find QklN (the state noise covariance at

tk based on N innovations) such that (3.1.3) is maximized. In other words,

QklN is that value of Q which yields the most likely innovations sequence

rk+I, rk+2' "' rk+N ' Thus very large values of Q imply less likely

sequences of the innovations.

Consider the maximization of (3.1.3) for the case of one residual.

First, the likelihood function is chosen as the joint density (3.1.4), and

its logarithm is taken to facilitate the maximization (since p and its

logarithm are monotonic, extremizing Zn p extremizes p).

-pn(1-) - in (H HT
k+1 Ti k+1 k+1 k+1 + Rk+1

-2_ k+l

T
Hk+1 Pk+1 Hk+ + Rk+1 (3.1.5)

Taking the variation with respect to Q gives

6J = - P + H 6 H
(HP HT + R) [H i HT + R]2 (3.1.6)

and assuming H6SHT > 0, the necessary condition 6J = 0 yields the equation
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r2 - HPH - R = 0 (3.1.7)

The sufficient condition for a maximum is 62J < o; hence,

1 2-
< 0

(H -PH lT + R)2  [ H H + R] 3

or

~ > [H HT +R] (. .8)

which is met if (3.1.7) holds. Next, using (1.2.17),

2 T T
k+1 - Hk+1 k+1,k kk k+1,k k+1- k+1 (3.1.9)

This equation is simply the equation for the covariance matching approach to

estimating Q based on one residual, r . In evaluating (3.1.9) the actual

residual given by equation (3.1.1) is used. Further, for Q to be non-negative

definite, the right hand side must be positive. Otherwise qkll is set to

zero. Unfortunately, H is usually not invertable, hence, resort must be

made to a pseudo-inverse or some other technique. Defining, for convenience,

A Hr

the pseudo inverse of A (45, 82-89)

# AT

yields

AT
k T [k+ 1  H Pk H T _ R] A (3.1.10)

Equation (3.1.10) does not provide a unique solution for Q. However, in the

special case where Q is a scalar, say q, one does obtain a unique solution:

r - H P T HT - R
kl = T  (3.1.11)A A
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Here again we require the right hand side to be non-negative. A disadvantage

is that one residual is hardly a sound statistical sample upon which to base

an estimate of Q. A post hoc modification found to be effective is to employ

the sample mean of the square of N predicted residuals,

N-1
r r m= k + 1 (. (1.12)N N . m+j.

in place of V 2 This requires storing N observations, which would not be
k+1l

so bad in itself, but the state estimate then either periodically lags the

observations by N points, or else the last N estimates must be reprocessed.

Either way the result is the same, but the former is computationally more

efficient since the state estimate is obtained only once for each time point.

Another modification which is computationally easier to employ and

which does not severly degrade the accuracy of the algorithm is to use the

sample mean of the history of the last N predicted residuals squared. In

this case,

N-1
I r2 (3.1.13)

N N m-j

In this approach the filter equations are operated for the first m observa-

tions, storing the predicted residual at each time point, tk+ . For each

m < N, the sample mean,

m-1
In 2 j m= 1, 2, ... ,N (3.1.14)

Sj=0

is formed and used in the estimation of Q. For each m > N a new squared

residual is added, and the oldest one is discarded. In this way a "movina

window" viewing the most recent N squared residuals is maintained. This

modified approach is diagrammed in Figure 3.1.
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Given:
XO, P,

0o' 0'

kmax, N

k = 1, y = 0

k = k+1

'k =Yk H xk

No k < N Yes

k = r(I- KH) Pk

ST f
o K. H EtiKt=PH (HPH +R)-1

? k = k + K r.
Yes

End

Figure 3.1 Adaptive Estimation of Q



79

Note that both of the approaches reduce to the optimal case of one

predicted residual when N = 1. In this case (3.1.12) and (3.1.13) are

identical.

Further modifications are possible to improve the single residual

estimator (5, 314); however, these tend to become rather complex. Also,

when more than one residual is used in (3.1.3), the resulting set of equations

to be solved is nonlinear. In fact, they are basically the types of equations

found in other adaptive filtering methods (26), (28).

3.2 Adaptive Estimation of Suboptimal Filter Parameters

Since the suboptimal methods of Chapter 2 effectively alter the

state error covariance, it is reasonable to assume that the adaptive algorithm

of section 3.1 can be applied to estimate the various suboptimal filter para-

meters. In each case, relating the parameters to the state noise covariance

provides the necessary link to allow the adaptive estimation of the

parameters.

For the data age-weighting technique, we can equate the standard

error covariance prediction equation (1.2.17) to the age-weighted error

covariance prediction equation (with Q = 0):

P+ = Pk + r Q = sP (3. 2.)k+1 k

Using this relation in (3.1.7) gives

2 -H sP k -R =0Trk+1 - k+1 k k+1 k+1 =

or solving for the scalar, s,

r -R2 R

H ( P <T H

Again the post hoc modification is made and yN given by (3.1.12) or (3.1.13)

is utilized.
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T1 T

Since s is required to be greater than or equal to 1, (3.2.3) may not be

employed until

T T
y > H D P T H + R (.3..4)N -

To adaptively estimate the gain scaling parameter, b, in section 2.2,

the optimal and suboptimal gain expressions are equated.

b P' H(H P" H T + R)-1= (P, + Q,) HT(H P + HT + H T + )-1
(3.2.5.)

where P' _ p T and Q' r F T . Solving for H Q H one obtains, after

premultiplying by H,

b H P' HT (H P HT + HQ' H + R) = H(P + Q') HT (HP HT + R)

H Q" H T THQ T HT = (b-1) H P" HT(H P HT + R) (3.2.6)
k [R - (b-1) H P H T ]

Substituting into equation (3.1.9),

(b-1) H.P" HT(H P- H + R) H T

R - (b-1) HPHT  N HP

which, solved for b, yields
T T

(y - R) [H D P D H + R]
b= >1 (3.2.7)

T TH D P (T H

where the inequality on the right is a condition on b established in section

2.2. Also it is noted that equation (3.2.7) requires N > R, a condition on

its use.

The modification (2.2.11) to the gain scaling technique may be formu-

lated similarly to adaptively estimate its associated parameter, c. Equating

(2.2.12) with the gain equation gives
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P H = (P + Q') HT(H P H T + H Q HT + R)-1 (3.2.8)
HP' HT

which, when premultiplied by H and solved for H Q- HT yields

H Q HT aR- (1 - HP HT

(1 - a0)

Substituting into (3.1.9) and solving for a yields the simple equation,

a = 1 - R/ N  (3. . 1 0 )
R/yN

Conditions on a require that (3.2.10) produce an a > H K.

For the modification given by (2.2.14) the appropriate adaptive form

is similarly found. Equating the gains,

(P + Q) H (H P' H + H Q H + R)- =

(P, HT + R P HT/H P- HT ) (H P- HT + R) - 1  (3.2.11)

premultiplying by H and solving for H Q HT gives

H P H T(H P IIT + R) + H Q H T(H P HT + H) =

HP' HT (H P' HT + R) + H P T HT  Q HT + 1 R(H P' HT + R) + 13 RH Q HT

H Q- HT R(1 - ) = R(H P HT + R)

H Q H T = H Q rT HT  S(H P' HT + R)
(1 - B)

(As before, P" = D P DT and Q = r Q T.) Substituting into (3.1.9) and

solving for S one obtains

(H P, HT + R) = [H P DT HT + R] (3..1
YN 

YN

with the conditions on 1 that 0 < 1 and hence

YN H( P T H + R
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Finally we note that for the additive gain term technique, a similar

procedure to determine the adaptive form yields results identical with

equation (3.2.12). This is true because equating gains and premultiplying

by H gives H B3 R /H HT/ = R, and from then on the equations are identical.

The previously discussed suboptimal adaptive algorithms are easily

implemented in accordance with Figures 3.2, 3.3, and 3.4. Either of the

predicted residual sample means discussed in section 3.1 may be used; hence

their computation is not shown in these figures.

3.3 Estimation of Auto-Correlated Model Errors

One of the most effective and useful ways to compensate for dynamic

modeling errors is to estimate such biases directly, including them as part

of the state vector. In general, model errors are not purely random, but have

time correlated components as well. Thus, by assuming some functional form

for these components, their values may be estimated from observation point

to observation point.

There are several advantages in this approach. First, of course, is

that the estimation accuracy is improved since model errors are compensated.

Second, insight into the nature of the modeling errors is obtained .as an

additional benefit, and through off-line data analysis, the form of the

dynamic model can be refined for future use. Third, since the state vector

is simply augmented, the estimation equations remain essentially unchanged

from the classical Kalman sequential form. Of course, lengthening the state

vector increases the computational load; however, this is not often a

detriment considering the state of present computer technology.

A further motivation for the adaptive estimation of model errors

should be noted. It is true that small bounded errors may be effectively
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Given:

xO PO

k
max

k k-1

Tk = ( Pk- 1 0

=N -R

- TH PH

s = ma {s, 1

Kk = P HT(H PHT + R/s) -

Pk =s(I- K H) P

Xk = x + K(y - H x)

k = k+1 max End

Figure 3.2 Adaptive Age-Weighting Filter
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Given:

0-' 0

k
max

k k-1

P QH P +R
k k-1D

(7 - R) (HP HT + R) mod.

SN 0 Gain ScaZing YesT

a= - RY N

b=max {b , 1} Scle = aFil He

Kk = P H (H PH + R)-

k kmax

k = k + b K(y - H x)

Yes Pk = I- (b -b 2) K H P

Figure 3.3 Adaptive Scaled Gain Filter
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(;iven:

X01 Po'

k
max

k x

P =OPb

T
= 1 - (H P [I +

= max {f , O}

Mk = ( + R/H HT) H T(H HT +R) -

xk = x + M(y - H x)

Pk = (I- M H) + P +
HH

No Yes
max End

Figure 3.4 Adaptive Additive Gain Filter
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compensated (as long as filter operation is within the range of linearity

of the system dynamics) by using a "state noise" approach, i.e., simply

determining the Q-matrix. However, for large or unbounded errors such

an approach is usually impractical if not impossible. Thus extracting as

much of the auto-correlated error as possible from the model uncertainties

results in a smaller, purely random component. Consequently, the associated

state noise covariance matrix, Q, is less, and since this establishes a

minimum upon the state error covariance matrix, a smaller Q offers greater

confidence in the state estimate.

The question concerning the type of functions to be used in modeling

the correlated errors is really an open one. The answer depends upon the

application where two important considerations are the filter operating time

and the sampling interval (more will be said of this later). Approaches have

included the use of simple power series in time, Tchebycheff polynomials, and

Fourier series. For our purposes, the term structure is introduced to mean

the functional form of the correlated model errors.* Thus the structure may

be linear or nonlinear according to the form of the model error approximating

functions. Incidentally, the case of purely random errors is denoted here

as a null structure -- no time correlated components. Usually, the assumed

error form is some linear combination of a linear or nonlinear structure and

a null structure, i.e., of a time correlated component and a purely random

component.

The incorporation of model error structures into the estimation process

can occur in basically one of two explicit ways. Denoting the vector of

* Lainiotis (38) uses structure to mean the dimensionality of the state
vector. Our definition may be seen to include this aspect.



87

error components by e, one can write a differential form,

e(t) = g(e, a, t) + h(t) u (t)

a(t) = 0 (3.3.1)

or an algebraic form, e(t) = G(eo, a, t) + H(t) w (t) with the accompanying

differential form

e (t) = 0

a(t) = 0 3. _

where a is a parameter vector of constants, and e0 is the initial condition

vector, e(t ), and w is state noise with covariance Q(t). u (t) is zero
0e e

mean, uncorrelated noise with covariance* E{u (t) u T(s)} = e(t) 6(t - s).

Which form is used is of no particular importance in the subsequent discussion.

If a closed form solution, or even an approximate solution, is available for

the expected value of (3.3.2), an easier implementation may be possible since

the corresponding components of the state transition matrix are simply the

identity matrix of appropriate dimension. If no explicit solution of E{e}

is available, clearly (3.3.1) is to be used. Further, if g(e, a, t) is

nonlinear in e and a, an appropriate linearization must be made in order to

use the estimation equations described in section 1.2.

Since the model errors are estimated as part of the state vector, each

time the estimate, e(t), is obtained the model is updated. Thus if

z = f(x, e, t) is the subvector of the complete state vector time derivative,

* 6(t - s) is the Dirac delta. Although w is not differentiable in

the classical sense, ue can be thought of as the "derivative" of w , and

hence as an uncorrelated random variable with infinite covariance. A

discussion of stochastic calculus is given in (5).
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x(t), for which the errors are to be included, then z = f(g, ', t) represents

the updated portion of the model.

Note that in (3.3.1) or (3.3.2) the adaptive nature of the algorithm

lies in the fact that the constant parameter vector, a, is estimated as well.

Hence, if a reasonably accurate structure is assumed, subsequent estimation

provides accurate values of a. There is a danger in using the forms as

presented in (3.3.1) and (3.3.2). As the estimation process is carried out,

the a-vector converges to a constant value with the corresponding error co-

variance and hence gain terms approaching zero. Thus if the assumed structure

is not an accurate approximation over the filter operating period, the eventual

"hardening" of the structure as a takes on its constant value may, and usually

will, produce divergence of the estimate. Since one either does not really

know the error structure or else it is computationally too complex, it is

usually a good idea to model the a-vector with a null structure, i.e., as a

random parameter:

a(t) = u, E{u } = 0, E{u (t) u T(T)} = Q (t) 6(t - T) (3.3.3)a a a a

This keeps the error covariance from vanishing, and the gain will remain at

some significant non-zero level such that the value of a(t) is changed to

allow the assumed structure to conform more accurately to the actual model

errors.

Before discussing some specific examples of the structures used in

the investigation, it will be advantageous to specifically define the error

vector, e (dimensioned r), and parameter vector, a (dimensioned s), with

regard to the previously mentioned forms. The differential approach is

selected so that

e(t) = g(e, a, t) + h(t) Ue(t)

a(t) = u (t)

Ca
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We define the random variable

uT(t) = [ue(t)!ua(t)]

with statistics

E{u(t) = 0, E{u(t) uT (s) } = Q() S(t - )

For the cases where the algebraic form is to be employed, ,o0(".) is simply

included in the parameter vector, a. The form (3.3.4) will be used as a

general reference in the sequel, with the appropriate modifications for

eo(t) being understood. Finally, the implementation is shown in Figures

1.1 and 1.2 with the modification that the state vector includes the compon-

ents e and a; i.e.;

x(t) is redefined to be e(t) (3.3.5)

La(t)J

where the x(t) on the right is the original state vector.

A Simple Linear Structure. One of the simplest model error structures

is a linear function of time,

e(t) = CO + cl t (3.3.6)

where

Co = Uo

1 = ul1

Hence,

a = . a(t) - [o u (t) = u(t) (3.3. 7)

and



90

e(t) = [I t I] CO (3.3.8)

Note that without the presence of state noise, u and u , the coefficient

terms, c0 and c w, will take on nonvarying values, and the resulting "hardened"

linear structure will probably not represent the model errors very well

(unless, of course, the error actually -s linear). The presence of the

state noise keeps the gain from vanishing, and on the average (3.3.0) should

approximate the model errors fairly well over a short interval.

Further discussion and applications of this model are given in

Chapters 4 and 5.

The Ornstein-Uhlenbeck Stochastic Process. Another simple structure

is that introduced by Ornstein and Uhlenbeck as a model to describe the

velocity of a particle undergoing a Brownian motion (40, 516). This model

has been used successfully by Ingram (32), Tapley and Ingram (41), and

Tapley and Hagar (34), (35), in orbit determination studies. The Ornstein-

Uhlenbeck process obeys a simple linear, first order differential equation

(Langevin's equation) of the following type:

E(t) + cota 6(t) = U(t) (,. 3. )

where* a is a vector of constant parameters and u (t) is Gaussian white noise.

The process is stationary, unbiased, and, by solution of (3.3.9), is expo-

nentially correlated in time. Further discussions of the properties of this

process are given in (5, 70-74) and (40, 516-524). For our purposes

application to adaptive model error compensation gives

* The notation ['a implies a diagonal matrix whose elements are the

components of the vector, a.
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e(t) = E(t) = -r-aJ £(t) + u (t)

a(t) = a(t) = u (t)u
u(t) = .. ] (3.3.10)

Further discussion and applications of this model are given in Chapters 4

and 5.

Harmonically Bound Motion. If a particle undergoing Brownian motion

is suddenly subjected to a displacement-proportional force, the equation of

motion is simply that of a randomly forced harmonic oscillator (40, 524-525):

E(t) + [a J E(t) + -J E(t) = u (t) 3.3.11)

where a and B are constant parameter vectors, and u (t) is Gaussian white

noise. This process is stationary, unbiased, and has autocorrelation properties

dependent upon the signs of [ca J and -B J. This equation has been employed

successfully as a model error compensation structure in low thrust space

vehicle navigation by Tapley and Hagar, (34) and (35). Application of this

structure to adaptive error compensation gives

af").... = .. . = u (t)
(() u (t) ( Ei

u (t)

S........

~(t)

uB(t) (3.3.12)

Further discussion and applications of this model are given in Chapters 4

and 5.
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3.4 Linear Transformation of the Ornstein-Uhlenbeck Process

The model error forms presented in the last section were chosen in

an apparently arbitrary fashion. In this section, a unifying derivation is

presented from which each of the previous models can be obtained under appro-

priate assumptions. The general result is a representation shown to be

equivalent to an exponential multiplying a Fourier series.

Consider the Ornstein-Uhlenbeck process of equation (3.3.9). Let

c(t) be a (21 + 1)-vector related to the r-vector, e(t), by a constant

r x (21 + 1) matrix, C', whose values may be complex.

e(t) = c ' E(t) (3.4.1)

Further, let c(t) satisfy the differential equation (3.3.9). For the j-th

component of e(t),

22+1
eC(t) E (t)

21+12 1 to+t

m= c' m[c (t ) exp( -a t) + W' ] (3.4.2)

where the am are also allowed to be complex. Taking the expected value, the

second term in brackets vanishes. By absorbing the e(t ) into the ca, one

then obtains

21+1
E{e.(t)} e.*(t) = c. exp( -aM t) (3.4.3)3 3 m=1

with c. = c' s (0). This is the general form of the transformation. WithJm jm m

Cjm and a complex, the only restriction is that e,*(t) is usually required]m m 3
to be real in order to represent real model errors. If a is furtherm
restricted to be of the form
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( 4" i, II o, ( . 4.4)
m 3 3

where i = /-, , and if the limits on the summation are changed to run from

-1 to +1, (3.4.3) becomes

1
e.*(t) = exp( -p . t) c. exp( - im w. t) (3.4.5)

S1m 3

With c. of the form
3m

s .
Cjo 2

s. -ir.
C. J m im m > 0
lm 2

s. +ir.
C. = ]m m m < 03m 2

then equation (3.4.5) can be written as

e *(t) = exp(- p t) C {s. cos(m w. t) + r. sin(m w. t)} (3.4.6)

Sm=O jm 3 jm 3

where use has been made of the definitions

cos = [exp(i ) + exp(- i p)]/2, sin c = [exp(i p) - exp(- i 11)]/2i

Thus under the foregoing restrictions, the process reduces to an exponential

multiplying a truncated Fourier series. Some special cases are now considered

which yield the models of section 3.3.

Case 1. Let Z = 1, p. = 0, and using the series expansion for sin and

cos through the first order, (3.4.6) becomes

e ,*(t) = Ps + r W. t (3.4.9)j jl ji 3

which becomes the linear form (3.3.6) upon making the identifications

r10 r1
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Case 2. Let Z = 0, but retain the exponential form. Then (3.4.6)

gives

e .*(t) = Sjo exp( -Pj t) (3.4.8)

which is the solution to the differential equation

e.*(t) = -pj e.*(t)

This is obviously of the form of the mean of (3.3.9) with

a.j = p.

Case 3. Let Z = 7, and set sj = 0. Then (3.4.6) becomes

e .*(t) = exp( -pj t)[s cos w. t + rjl sin w. t] (3.4.9)
3 i ji 3 1 3

which is the solution to the harmonic oscillator

.*(t) + 2 p. e .*(t) + (p 2 - .2) e *(t) = 0

Making the identifications

a.= 2pj, .= p.2 -_ -. 2

the result is of the form of the mean of (3.3.11).

It should be apparent that more complex structures can be obtained

easily from (3.4.6). For example, without restricting sjo to be zero, the

resulting form of (3.4.6) with I = 1 satisfies the nonhomogeneous differential

equation,

e .(t) + pj ej*(t) + W. 2 e*(t) + 0.2 Sj. exp( -pj t) = 0
3 . 37 j )0 =7

3.5 Structural Adaptation

With the general form (3.4.6) established as being capable of repre-

senting a number of different functions, it is possible, at least in theory,

to adapt structurally to a close approximation of the dynamic model errors.

By defining the vector of model errors and parameters,
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e (t)

1 M

e (t)

z(t)

Pm(t)

w (t)

and selecting m to be large enough (based on the degree of sophistication of

the a puio'i dynamic model), the filtering equations (Algorithms I or II,

Chapter 1) will produce values for the p. and w. which will result in an

approximation, e., to the true structure of the model errors. The obvious

disadvantage is in the implementation: a large m produces a very significant

computational load. Thus the flexibility for structural adaptation, as

offered by a form such as (3.4.6), is partially offset by the need to exercise

parexic judgment in selecting a value of m.

3.6 A Sequential State Noise Covariance Estimator

In this section we return to the problem of estimating the state noise

covariance matrix. A new approach is taken, although the technique is simply

the formulation of a Kalman filter algorithm applied to a vector whose

elements are those of the state noise covariance matrix, Q. With this ob-

jective in mind, once we have obtained the analogous state-observation and

state dynamics linear relationships, the appropriate estimation equations can

be written down immediately. The resulting method will be shown to yield a

minimum variance estimate of the state noise covariance matrix elements,

subject to the additional restriction that Q be non-negative definite.
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We begin by establishing the square of the kth predicted residual as

the required observation. From section 3.1, the predicted residual is

defined as

rk = Yk- Hk xk

Y k Hk 'k,k-l 'k-1

Hk 'k,k-1 k-i + Hk Fk,k-1i k-1i + k (3.6.1)

Continuing with the previous assumption that we are dealing with scalar

observations, we then form

rk rk Erk2 HkPk k k k 3.6.2)

and define the error, 0, as

k = rk - E{rk2} (3.6.3)

where E{0) = 0. Then

2 Trk = H P Hk +Rk + (3.6.4)k k k k k k

Further, assume that Rk is exactly known and define

D 2= - R (3.6.5)k k k

Vk = Hk 7k k T (3.6.6)

so that

Dk = Vk + 'k (3.6.7).

Now Vk is a function of Qk-l' since

ST T
P P + F Q T (3.6.8)k k,k-i k-1 k,k-1 k,k-i k-1 k,k-1

and it is Qk-1 that we are trying to estimate. If a Kalman filtering algo-

rithm is to be developed, then a linear equation relating Qk-1 to D must

be obtained. To this end, the elements of Q are first placed in a vector, a,
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such that the elements are stored row-wise. Further, use is made of the

fact that Q is symmetric so that only the upper triangular portion is stored.

Thus,

S= (qll "' qm 22 .."' q2m 33 "' qm-,m mm (3.6.9)

where m x m is the dimension of Q, and qk-1 = q(tk-1) is therefore the

m(m+l)/2 x 1 state vector to be estimated. Proceeding formally, consider a

Taylor series expansion for vk expanded about the value, qk-1 = 0, and

truncated to the linear term:

V (q ) = Vk + kq (3.6.10)
=0  q =0

k-1 k-1

Vk(0) is simply (3.6.6) with gk-1 = 0. In analogy with the linearized observa-

tion state equation (1.2.23), we use (3.6.10) and write (3.6.7) as

Ak = k q k- + 'k (3.6.11)

where

A D -V (0) r 2 -H HT R

q k-1= 0

k

k -q (3.6.12)

q k-l=0

The final task in developing the components of the observation equation is to

determine the elements of Jk . Since Pk , and hence vk , is linear in Qk-1'

equation (3.6.10) is exact; we write (3.6.10)

k (qk-1) = Vk(O) + 6Vk() (3.6.13)

The expansion of vk with respect to Qk-1 yields
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6 k = 6(Hk k kT )  Hk rk,k-1 6k-1 k,k-1 k

T T=TH Q FT T (3.6.14)k k,k-I k-l k,k-i (3.

where 6k- k-i -
k-
1  k-1 since the expansion is about the nominal value

-1 = l Q~ Now the key factor in the development hinges on the ability to

express the elements of H Q HT in the form

Jq (3.6.15)

where J is composed of the elements of H and FI. To this end we digress for

a moment and prove the following:

Theorem I. Given the matrices A, B, C and x of dimensions Z x m,

m x n, nZ x m2 , and m x m respectively, then the 1 x n matrix, AXB, can be

written in the vector form, Cx, where xT = ( 1 1 x 12...xlm x 22 x 2 3...x2m... )

an m2-vector, and C = c k} with the c..ij being given by
kp -1

cij = aI(i-1)/n+B,I(j-1)/m+lj b[mod(j-1,m) + 1)],[mod(i-1,n) + 1]

where

Is I = integer part of s

and

mod(s, t) = s - jt-. t

Proof. Writing AXB in expanded form results in the following

sequence:

a11 ... alm 11 .. l . 11 ... blnAXB= [

Sa Mml . . mm ml mn

m m

11 j jn

a 1 ... a b ... wx 7<1 mj
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m m m m

Si xij bjl . . . ali xj.. b .i i jn

AXB=

m m m m
C al . x. b . . . Z, x. . b (3.6.16)

. in

The general element of AXB is further expanded as

mm

faki b. x..= a b x a b ... akl b xlmS p ij kl blp 11 +  kl 2p 12 +  mp im

Sk2 blp 21 + k2 b2p 22 ... k2 Imp 2p

+ ... a bm x , k = ,m , p = ,m
km mp mm

In vector form this becomes

mm r11
x ai bp x. i . = (akl blp akl b ... (Zm ) iX2 (3.6.1)kO ypp .kii k 2p k )m mp 12.

mmj
Arranging the elements of (3.6.16) into a column vector and using (3.6.17)

results in

mm

ali bj x all bll . a bml X

mm

ai bjn .. a11 bn alm mn

X= 21

a b X . a bll a b

i j X2m

m m x

S.i b n xij al bin . al b mm (3.6.18)
L' dn j 61 In 1- mn
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Defining the elements in the nZ x m2 matrix on the right as the elements of

c completes the proof.

In view of this theorem we also have the following:

Corollary. Given the conditions of the Theorem I above, let X and

AXB be symmetric. Then AXB may be placed in the vector form Cx where

T = ( 11 .... x x22 ... 2m ... x) is a vector of m(m+1)/2 elements and

C is an In(ln+l)/2 x m(m+l)/2 matrix with elements

a b , for q = r
.. pq rs
13

a b + a b , for q / r (3.6.19)
pg rs pr qs

and where

p = l(i+t-1)/n + 11

q = I(j+u-1)/m + 1!

r = [mod(j+u-1, m) + 1]

s = [mod(i+t-1, n) + 1]

t = li/nA and u = Ij/ml

The equations for the indeces of the terms in Theorem I and the corollary

follow by induction.

Since x is symmetric, x.. = x.. , i f j. Then the redundant elements
13 37

of x may be eliminated so that xT = ( ll...lm x22...x2m x33 ...X 3m...Xmm)

is m(m+1)/2. In Cx the elements of C corresponding to x.., for i > j, are

simply added to those corresponding to x.., for i < j. Further, the symmetry
3

of AXB yields

m in mm
i a k. .. b p a . b j

hence the duplicated rows of c need not be included. As a result, the

elements of c are given by (3.6.19).
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In light of this corollary, the validity of (3.6.15) is established.

A simple example will serve to illustrate the application. Consider a 2 x 2

Q-matrix, with HT as a 3-vector. Then

Q [q11 q1 2

q21 q 2 2 J

H = [hl h2 h 3]

11 12

S 21 
2 2

Y31 3 2

and

11  12 31

Hr = [h h h ] y 21 Y2 2  h. Y h Y (3.6.20)

r 31 >32

Making the identifications

A = B = H F, X = Q

then application of the corollary to Theorem I yields

T T
x q =(qll q 1 2 q 2 2

and

h3 i)2( 3 3 )3

i Yi i i2 h, i2)2

Note that in cases where J has only one row (as in this example), then we can

write the equatity

H T HT = J q (3.6.21)

This example corresponds to the case of scalar observations. In line with

our previous developments we continue with this assumption, although it is

not a restriction.
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With the validity of (3.6.11) established and its elements determined, it

is important to consider the variance of Ik. This is necessary as the inverse

of this variance and some of its elements appear in the filter gain.

Defining

J q + = Jk(k-1 - ) +  (..2)
k k k-1 k k k-1 k-1 k

and

G E EIA AT} = E{A2
k k k k

then

Gk= Jk E{qk -  } JkT  + Jk E{_l }
k =k E{q- 1 qk-1 k +k E{qk-1 0k

+ E{ q } J T + Ek2 3)
k k-1 k k

Letting

k k-1  k- 1

C = Eqk-1

and

T = E{k2} (3.6.24)

then (3.6.23) becomes

-- '7 -
G = J S + 2 J C + T (3.6.25)

In the ordinary Kalman filter the observation error is assumed to be uncor-

related with the a potio'ti state estimate. Here this case is not generally

true; both 0 and q are functions of u, and this correlation is reflected in

c. However, it is difficult at best to determine appropriate values for the

elements of C. Thus, in view of this lack of knowledge, a viable alternative

is simple to assume C = o so that (3.6.24) becomes

G=JSJ T + T
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This expression is directly analogous to the observation residual variance of

the ordinary Kalman filter:

We now lack only a "dynamics" relationship governing the prediction of

q. Assume that qk-1 is linearly related to qk-2 by an appropriate state

transition matrix, k(tk-, tk-2

qk-1 k-l,k-2 k-2 (3.6.26)

If the process generating the elements of state noise vector, u, is wide-sense

stationary, then the state noise covariance matrix is constant. Making this

assumption we have

k-1 k-2

and hence I' is the identity matrix, I. Such an assumption may not be overly

restrictive since usually the dynamic model governing x can be determined such

that u is at least bounded over the interval of interest, t < t < t .

We are now in a position to write down the estimation equations.

Making use of the definitions (3.6.24) and employing the assumption C = 0, the

appropriate relationships may be written directly as

S =S ., 9(3.6.27a)
k Sk-1 qk- qk-2

- (3 - 2
Mk = Sk Jk /k Sk Tk) (3.6.27b)

qk-1 = qk-1 + Mk(A - Jk qk-1) (3.6.27c)

S (I - Mk k Sk k k) + Mk Tk T 3.6.27d)

where Mk is the filter gain, and

Sk = E{(qk- - qk1)( - k-1 )  
(3.6.28)

There are additional restrictions which must be set forth before the algorithm

may be used. Recall that Q must be non-negative definite. However, it is
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not unlikely that (2.6.27c) may produce an estimate j which does not conform

to this requirement, particularly during initial (transient) operation of

the filter. In order to accommodate the non-negative definite constraint

we call upon the properties of the covariance, Q. First, recall that for

the diagonal elements, q..,

qii > (3.6. )

Also, the qij' 4 j, may be written in terms of the correlation coefficient,

Pij, as

q = P. vqijj (3.6.30)

where

-1 < p.< 1
1-7

Now since (3.6.29) and (3.6.30) are inherent properties of a covariance

matrix, and since any covariance matrix must be non-negative definite,

(3.6.29) and (3.6.30) may be used to insure the restriction on Q is met.

Thus if any diagonal element is estimated to be negative, it is then set

to zero. Correspondingly the appropriate gain element is recomputed to agree

with this modification:

0 = qii + m(A - J q)

or

m = -qii/( - J (3.6.31)

where m is the corresponding element of Mk . After performing this test, if

m m
Sij > qjj (3.6. 32)

then set

qij =max{ - qii jj , min[ qi jj qi (3.6.33)3. 73 1,



where the superscript, m, means the value computed by (3.6.25), and where

the max and min functions mean take the respective maximum or minimum values

of the arguments. Further, the corresponding gain term is modified

as

m = (qij - q )/(A - J q)  (3.6.34)

The foregoing restrictions do not destroy the unbiased property of the

estimate, i.e., E{q}^ = q. Further, since the Kalman filter normally produces

a minimum variance estimate, the restrictions on q result in a constrained

minimum variance estimate. Of course, this is true only within the validity

of the assumption E{q6O = 0.

No mention has yet been made as to the choice of the residual error

variance, T. Since it is somewhat difficult to select this value, it may be

estimated also. One way is to use a method proposed by Tapley and Born (43).

The technique is simple and straightforward, and is the average of the a

poztetioki residuals given by the following recursive equation:

1 1-2
Tk  k k-_ k k k- (

An initial value which may be used is To = A02, since if G q = 0,
020K2 = 02 - T

Since (3.6.35) is the average of all the residuals up through tk as k

becomes larger, each new residual has less effect in determining ik* This is

acceptable if 0 is wide-sense stationary, in which case 7T is constant. If

this is not the case, then a modification which offsets this effect is to

use only the last N residuals. Thus for k < N, equation (3.6.35) is employed.

At each tk the kth residual is saved. Then for k > N use

, - 1 ( j q )2 _ - q 2 C3. 6. 36Tk k-1 N - kk-1 N k-N k-N k-N-1.3

instead of (3.6.35), and continue to save the most current N residuals.
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The implementation of the sequential state noise covariance estimation

algorithm is diagrammed in Figure 3.5.

Although we have been concerned here with estimating only the elements

of Q, it should be obvious that the algorithm may be extended to include the
simultaneous estimation of the observation error variance R. In this case,
an augmented state vector, z, is defined as

z - (q R) T

Then T and j are redefined as

a= 2  liI J + O

and

J = (G 1)

The/corresponding estimation equations are of the same form, although . is
replaced by r 2 , and z replaces q.

It was indicated earlier that the assumption of scalar observations

is not a restriction. Consider the case where Hir is 1 x m. Then HFsTprHT

is Z x 7. Correspondingly,

r r = H ) P H + H TF HJ + R + 0

is also 1 x 1. Since the terms of (3.6.38) are symmetric, the corollary to
Theorem I applies, and we can write

*r2 = H p P IT HT) + J q + *R + *8 (3.6. 39)

where each of the terms is I (Z + 1)/2 x 1. For instance, if I = 2,
*r2 = ( 2 r 1r 2 r 2 2) T with similar arrangements for *(HI@p H ) , RR, and *6.

Thus,

*(H P T HT ) = *V(O) =V12

V22 q=0
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Given:

x0.) Po", qO

S o, T0, N, kmax

k= 1
Use ordinary

Kalman filter

for state x
k k- 1

estimates with Q T

obtained from P k k

rk = Yk - H xk

M 2 T

Sk = S

k k k k k

(A - J q) q. > Yes

k  k-1 Ni k-N k-N maork-N-1

Figure 3.5 State Noise Covariance Sequential Estimator
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and 211
R= R12

R22

and

S 12 (3.6.40)

22

The rest of the algorithm is obtained in a straightforward manner, similar to

that for Algorithm I (Chapter 1), subject to the non-negative definite

restrictions for Q.

Finally we note that the estimator developed above suffers certain

disadvantages. One of the more serious is the assumption of a specific model

for Q. This may be reasonable for a portion of the filter operating range.

However, if the state noise process, u, changes its behavior drastically after

steady state conditions have been essentially reached, the filter has no

power to adapt to the corresponding new value of Q. Recall that this is due

to the fact that the associated error covariance practically vanishes, and,

similarly, so does the corresponding gain. This situation is exactly analogous

to the original dynamic model error problem, and is the most serious disadvan-

tage of this Q-estimator. However, this being the case, we can apply any of

the previously developed compensation algorithms, including another state

noise covariance sequential estimator.

For example, an obvious method is to include a state noise fourth

moment matrix*, W. In this way the prediction of Sk given by (3.6.27a) is

* By using another filter to estimate W, this approach could be continued
ad ni&itum, becoming computationally very burdensome very quickly. The
author's opinion is that anything much more complex than (3.6.41) is seldom
practical.



109

modified to

Sk = S + w (3.6.41)
k k-i k-i

3.7 Summary

This chapter has presented a selection of adaptive optimal and sub-

optimal algorithms to compensate for model errors. In all cases the emphasis

has been on simplicity and generality.. Jazwinski's algorithm for estimating

the state noise covariance matrix has been shown to be optimal based on a

single predicted residual. By using the mean of a sample of squared predicted

residuals, an element of smoothing is introduced, but also at the expense of

introducing suboptimality.

The basis of Jazwinski's algorithm has also been shown to be applicable

to a number of the algorithms of Chapter 2, allowing the suboptimal parameters

to be adaptively determined.

In section 3.3 the approach (different from all the previous ones) of

attempting to estimate the actual model errors has been taken. This adaptive

method has been shown to require the assumption of a particular functional

form to represent the structure of the model error. Several examples have

been presented, and a general functional form developed to allow a measure

of structural adaptation. This has been in the form of a generalized

Ornstein-Uhlenbeck process, capable of structurally approximating (having

the approximate functional form of) a number of different functions.

A Kalman filtering algorithm for sequentially estimating the state

noise covariance matrix, Q, has been developed in section 3.6. The algorithm

is somewhat more complex than those previously presented, but has been shown

to provide a minimum variance estimate of Q, subject to the constraint that

Q be non-negative definite.



Chapter 4

APPLICATIONS: RENDEZVOUS MISSION

4.1 Introduction

In this chapter the algorithms presented in the foregoing chapters

are applied to the rendezvous problem formulated in Section 1.4. The interest

here is to gain familiarity with the operation of the various estimation

algorithms. Through the development of explicit equations, and plots of their

behavior, qualitative insight may be gained into the performance of the

algorithms.

4.2 Age-Weighting of Data

The standard age-weighting algorithm is easily applied to the rendez-

vous problem discussed in Section 1.4. Modifying the estimation equations

(1.4.6) to conform to the age-weighting algorithm, equations (2.1.1), result

in the following sequence:

k = k-1

P =P
k k-1

Kk =k[Pk + R/s] - 1

k = p + K[y - p]

Pk = s[l - K] P (4.2.1)

where it is tacitly assumed that R is constant. Starting with P(t ) = P

the gain and covariance recursions above may be applied to arrive at the

110
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steady state gain and covariance values*. Thus,

P = 1: PO

K, = P [P1 + R/s]-1

PO

(P0 + R/s)

0

R PO

(Po + R/s)

k = 2:

PR
P P R

2 1 (P/ + R/s)

K 2  P= 2[P2 + R/s]-

P I R/(Po + /is)

(Ro + R1/s) + R/s

[ P0/S + R/s2 
PO R

SP R/[P(1 + 1/s) + R/s2 ]

* The gain and covariance update equations could be used to solve
directly for the steady state conditions. However, using the recursion
equations to compute values recursively and.then inductively determining the
steady state conditions provide insight into the operation of the algorithm.
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k 3:

Po R

P3 2 P0 (1 + 1/s) + R/s2

K3 P3[P3 + R/s]-

Po R/[PO(1 + 1/s) + R/s2]

0 0

PI +  1O (7/ + 1/ 2) +  l /s3 0o +  3i/: + i." $ + ...3

P3 = P R/[P (1 + I/s + 1/s2) + I3

Continuing the recursion, one obtains for k = m:

Po
K =

j=O

000

m m-1 (4.2.2)

m m -

P0  1 i/si + R/sm

j=

r n-1 R (4.2.23)

j=O

Thus, as m o, K and P become
m m

0 P0  s-i
K - S ) = (4.2.4)

where Zim R/sm = O, since s > 1, and

s - 1
Pm = R (4.2.5)
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For very large k, the estimate of p, including the first order model error

effects, is found to be approximately

Ss - 1
k Pk (POy sinh Ytk + PO cosh ytk -k k+ k

or

k k 0 k k k

Using (1.4.25), the correspondinq error is given approximately by the

following expression

1 1 s 1
k 8 0 Po sinh ytk + p cosh ytk) k (4. ' 7)

For large s, the effect of the unbounded error term (first term on the right)

is small. Correspondingly, the random effects are more predominant, and in

the limit as s -* the error is due strictly to measurement noise. Because

the time correlated term completely dominates the noise term when k is large,

continued filter operation is possible only when s is very large. In fact,

best performance results here when s is very large since then all the

information is derived from the most current observations. As expected

(section 2.1) the error covariance in this case becomes, by (4.2.5), R.

4.3 Schmidt Suboptimal Filter: Gain Scaling

In section 2.2 it was indicated that the use of a constant value of

b can lead to certain difficulties. This is exemplified here when one

attempts to find the steady state gain and error variance. The error co-

variance recursion is used to solve for the steady state variance directly:

P = [1 - (2b - b 2 )  +
m P +R m

m
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In steady state, P = P = P.
m

P = [1 - (2b - b2) P P(P + R)

0 = -(2b - b2 ) P (4.3.8)

This implies either P = 0 or b = 2. Thus for 1 < b < 2, it simply takes

longer for the steady state condition of P = 0 (and hence K = 0) to be reached.

For b = 2, P = Po. In this case, the estimate eventually diverges.

For the method where (2.2.12) and (2.2.13) are employed, the steady

state variance, Pm, is found not to vanish, since in this case Fm is found to

be

- 2 - 3 9)

The corresponding gain is simply

K= (4.3.10)

As a - 1, only the most recent observations contribute information. Con-

sequently, K -+ 1 and P - R.

The corresponding estimate and error for large k are determined as

Pk k R 0 sinh ytk  PO cosh ytk - Pk + Vk

and

Pk (I - )(poy sinh yt k + p cosh yt k ) - (1 - L) k (4. 3. 12)

When b is determined by equation (2.2.14), the steady state gain and variance

are also seen not to disappear. Using the covariance recursion, one finds

for the steady state,
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2b - b 2 = 2 f+ 2 R 1 2R 2 R2

P P P2

S 2 R 2

p2

P= [1 - (1 - 2 R 2/P 2 ) P P(P + R)

[2 7i,2 p

= [- (1 - 2 ) p
P2 (P + R)

(P + 12 R)P P R

Solving for P, one finds that

P= 1R (4.3.13)

For the steady state gain,

R PK =bK= (1 + 3 ) P
P P+ R

which yields, on substituting for p from (4.3.13),

K =bK = 1  (4.3. 14)

When B = 0, one has the optimal Kalman filter, and the steady state values

of gain and variance are zero. For = 1, P = R and K' = 1, as expected.

For very large k, the estimate of p, including the first order model

error effects, is found to be approximately

k 2 1 [PoY sinh yt + p cosh yt k  k + VkPk Pk+ PO k k k k

or

"k 1 + k + B+1 [PO sinh tk + cosh tk+ v k ]  (4.3.15)

The corresponding e.rror is found to be approximately
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k - + 8POY sinh ytk + P0 cosh ytk 1 + 8 k B+ 1 Vk
(4.3.16)

Again the results are as expected. For 8 = o, the error consists of only the

time varying term. For 8 = 1, the error is due solely to the measurement

noise.

4.4 Schmidt Suboptimal Filter: Additive Gain Term

Using the same procedures as in section 4.3 for 1) = 1 + B K/P,

identical results are obtained for the steady gain and variance. Using

equation (2.3.6),

P 82 R2
P= (1 P ) P+

P+R P+R

(P + 2 R) R
P+R

or

P = R (4.4.1)

For the gain,

P R
P+ R P+R

or using P.= 8 R,

28M -
M + 1 (4.4.2)

It is noted that the difference between the two algorithms, discussed in

section 2.3, does not appear here. In other words, for the gain scaling

suboptimal term, the variance term divides out, yielding the identical

results in gain and variance.
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4.5 Limited Memory Filter

To apply the limited memory filter to the rendezvous problem, assume

we have available pml m and Pm m , and it is desired to obtain the limited

memory estimate over the set of (k - m) observations. The necessary quanti-

ties required by equations (2.4.8) and (2.4.9) are given below.

klk kIk kfk-1 + Kk rklk-

Ak k

Pml + K.r.
m j=m- J j

where the predicted residual is

rj. 1 = p 0 sinh ytj + p0 cosh yt - pjl v. (5.)

and the gain at t. is

Pmm
K.= ( m + 1 < j < k (4.5.2)

Similarly,

P i Rmimk Ik (k-m) P + R (4.5.3)

and

Pk m = P (4.5.4)

Pk (k-m) , the error covariance based on observations from tm to t , may be

found directly from equations (2.4.9) or (2.4.10) or may be computed recur-

sively by (2.4.12). The computation using equation (2.4.9) yields

1 -1 - m 1 F1

( k-m) P + R m1 -



118

or

Pk (k-m) =(k-m = R/k-m) (4.5.5)

It is noted in passing that for k-m = , i.e., one observation, the cor-

responding error covariance is as expected, Pkk m = R.

Using equation (2.4.8) the limited memory estimate is found.

(k-m) P + R k p
_=mm m F m-1Pk((k-m) - (k-m) P m R Pmlm + P 1m j=m+1 (j-m) P + R lmm

R (k-m) + (k-m)P I + R k rjj-1

(k-m) R Pmm R (j-m) P + Rj=m+1 mjm+

or

k I (k-m = M I + [P + R k (]L --
(k-m) m m + (k-m) (j-m) P + R (4.5.6)j-m+1 mjm

Thus, the outputs of (4.5.5) and (4.5.6) are the limited memory error co-

variance and estimate. Note that when k-m = 1, the estimate depends only

upon the most recent observation. In this case (4.5.6) gives

PkI(1) = Pk-1 k-1 + rklk-1

= p0y sinh ytk + pO cosh ytk + vk (4.5.7)

4.6 Numerical Results

The foregoing sections have considered the application of some of the

error compensation methods to the rendezvous problem. In particular, various

closed form expressions for the range-rate estimate, error, and steady-state

gain and covariance equations were derived. Such expressions help provide

analytical insight into the filter structures. However, the performance of

the algorithms can be seen best, perhaps, through numerical simulations.



119

Thus, in this section numerical results are obtained for each of the

compensation algorithms previously presented.

To carry out the simulations, nominal parameter values defining the

dynamic model were selected as shown in Table 4.1. The model error parameter,

y, is defined by equation (1.4.20) as

Y2 = 3 sin 2 E:

and reflects the gravitational parameter, p, the target vehicle radial distance,

rt , and the line-of-sight angle (above the local horizontal). For Earth orbit,

= 398603.2 km3/sec 2 . Thus, using the value of y given in the table, values

of E are determined for various values of IrtI. For example, an orbital

altitude of 160 km (Irtl = 6538.165 km) corresponds to e = 4.960; at 240 km,

E = 5.10

Parameter Value

Initial range, po 10 km

Initial range rate, po -1 m/sec

Initial range rate error, po 0 m

A pkioti variance, Po 10 (m/sec) 2

Observation error variance, R .01 (m/sec)2

Observation interval, At 10 sec

Model error parameter, y .18 x 10- 3 (sec)-

Table 4.1 Nominal Simulation Parameters
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In performing the simulations, the nominal or assumed model, as

before, is k = Pk-l. The true dynamics are computed according to the

linearized model, equation (1.4.22). The true range rate observations are

computed by adding a random number, distributed* N(o, R), to the true range

rate from (1.4.22). The observation deviation is then found by (1.4.23),

and the filtering equations of the various algorithms are applied to obtain

the gain, estimate and updated state error variance. In all cases investi-

gated, the true initial error is zero, as seen from Table 4.1. Also, to

provide a common basis for evaluation, the error sequence is identical in all

cases.

Standard Minimum Variance Estimates. To provide some standards of

reference, Figure 4.1 shows the behavior of the ordinary minimum variance

algorithm in the presence of model error with no model error compensation

techniques employed. Also shown is the case with perfect modelling. The

ordinate axis represents the estimate error in meters, with the abscissa

measuring time in seconds. Three curves are shown. The solid line represents

the actual estimate error, pk where the model error (1.4.25) is present. The

dotted line gives the estimate error for no modelling error. The dashed line

represents the computed error standard deviation (s.d.), 0k . Note
k k

that this curve is the same for both cases, regardless of the presence or

absence of model errors, since the estimation algorithms are identical.

For the incorrect model, the rapid rate at which the estimate of the

range rate diverges is rather astonishing. Thus at typical Earth orbit

* The notation N(O, R) means that a random number is sampled from a
normal distribution of zero mean and variance, R. In the simulations,
normally distributed random numbers were calculated using the Central Limit
Theorem (46, 98-99). Further, the same sequence of random numbers was
repeated from run to run.
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altitudes, relatively small line-of-sight angles -- oni the order of 5' --

produce a dramatic divergence of the range rate estimate. On the other hand,

for the exact model (1.4.22) the power of the Kalman filter is reflected by

the dotted curve: after 1500 seconds the error has practically disappeared.

Thus these two curves can be seen to bound the performance of any of the

compensation algorithms investigated for this problem.

Commonality of the Algorithms. Because of the fact we are dealing

with a single state variable, it is possible to relate most of the suboptimal

filter parameters to obtain equivalent steady stage filter performance. In

other words, through appropriate expressions relating the filter parameters

to each other, it is possible to obtain a value for each parameter which will

produce equivalent steady state performance for each algorithm. (Exceptions,

which are treated separately, are the ordinary [b = constant] gain scaling

algorithm and the limited memory filter.)

Consider the steady state relations for the age-weighting, modified

gain scaling, and additive gain term algorithms. These are given by (4.2.5),

(4.3.13), and (4.3.17), or (4.4.1) respectively as

s - 1

aRP -
oo 2 -c

P =BR

(Recall that this last equation is the same for the modified gain scaling of

equation (2.2.14) and for the additive gain term.) For equivalent steady

state performance each of the above expressions must be equal to any other,

thus providing the necessary relationships relating the filter parameters.

Therefore,



123

S s (4.6.1)2- a s

For the case where the state noise covariance is employed, the steady state

expression given by (1.4.32), may be equated to the corresponding expressions

containing the suboptimal filter parameters. Thus,

1 + /1 + 4/f (1.4.32)
PO = R

1 + V1 + 4/f + 2/f

where f = Q/R, may be included in (4.6.1) so that

a s - 1 _ + + 4/f (4.6.2)
-01 + 1 + 4/f + 2/f

Using these equations, a table of values may be constructed. Table 4.2 gives

such appropriate values which yield the equivalent filter performance. The

table was constructed by selecting various values of B and then solving for

the corresponding values of a, s, and Q.

3 a s P

0. 0. 1.0 0. 0.

.10 .1818 1.111 .0111R .1R

.20 .3333 1.250 .0500K .~R

.30 .4615 1.429 .1286K .3

.40 .5714 1.667 .3.667 .41

.50 .6667 2.000 .50001 .5h

.60 .7500 2.500 .9000KI? .611

.70 .8235 3.333 1. 633 .7

.80 .8889 5. 000 3. 20011 . 8R

.90 .9474 10.00 8.100K .9R

.99 .9950 100.0 98.01R .99K

1.00 1.000 oo R

Table 4.2 Filter Parameter Values for
Equivalent Steady State Performance
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Figures 4.2a through 4.2e illustrate the numerical elquivalence inl

terms of filter performance. The curves were actually generated using the

additive gain term algorithm for 3 = .1, .3, .6, .9, and 1.0, respectively.

However, steady state conditions, and hence equivalent performance, are

quickly reached. These curves therefore illustrate essentially the same

performance for each of the algorithms. As in Figure 4.1, the solid line

represents the actual estimate error, pk. The dashed lines represent plus

and minus values of the computed standard deviation, ok'

In examining the figures one finds that the maximum and minimum error

values increase with increasing values of the filter parameters. In the

extreme (Figure 4.2e), the estimate follows the observations, and the errors

are greatest in absolute value. Based on the sample of 384 points, 71.61%

of the estimates are within the la value* of .1 meter, determined from the

error covariance computed by the filter. In Figure 4.2a the absolute value

of the maximum and minimum errors are smallest. Here, 64.06% of the 384

points are within the lo value of .03163. However, the model error appears

to be showing itself in the form of a bias; the majority of the error values

lie above the expected value of zero. In Figure 4.2b the error does not

exhibit such a bias, thus suggesting parameter values somewhere between those

for Figures 4.2a and 4.2b (e.g., .1 < B < .3) -- at least for the time inverval

of 3840 seconds. However, regardless of the value selected, as long as 8 < 1,

divergence can be expected to occur eventually. This follows from the

unboundedness of the error, equation (4.3.20).

Because the steady state variance associated with the ordinary gain

scaling (b = constant) is zero, the equivalence developed above cannot be

* A short discussion of an interpretation of a in light of normal
ergodic processes is given in Appendix D.
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obtained. Thus this algorithm results in a completely different, and not

very effective, filter performance. This is seen in Figure 4.3, which shows

the estimate errors for the gain scaling algorithm using values of b = 1.3,

1.6, and 1.9, respectively. Clearly the performance is unacceptable; diver-

gence occurs soon in all cases. The values b = 1.3 and b = 1.6 are seen to

have little effect on the estimation performance. Only when b becomes close

to 2 does the algorithm have an effect in delaying the divergence. Even then,

the variance eventually becomes zero, although it simply takes longer. Recall

from equation (4.3.12) that b = 2 prevents any change in the variance, and

hence Pm = P0. For this problem the ordinary gain scaling is obviously not

acceptable.

Adaptive Estimation of State Noise Covariance and Suboptimal Parameters.

Numerical simulations were performed for each of the adaptive forms for esti-

mating the state noise covariance and suboptimal parameters, as presented in

sections 3.1 and 3.2. In these simulations, the values of y given by (3.1.13)

and (3.1.14) were used (the sample mean of the square of the previous N

predicted residuals. Initially, (3.1.14) was used to "build up" the set of

N residuals. Subsequently (3.1.13) was used to compute YN* Use of equation

(3.1.12) was not investigated due to the inherent disadvantage of either having

the estimate lag the observations, or having to reprocess or smooth the

estimates.

In computing the various parameters, the following equations were

empl oyed:

Qk = max [0., y - P - R ] (4.. ;,a)

Sk = max [1., (yN -R)/Pk] (4.6.3b)

b k = max [1., (yN - R)(Pk + R)/Pk] (4.6.3c)
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c'k = max (yN - R)/yN, Pk(Pk + R)] (4.6.3d)

fk = 1. - (Pk + R)/max [(Pk + R), YN] (4.6.3e)

These equations yield appropriate values for the parameters according to the

values of YN. They also automatically incorporate the attendant limits on the

parameter values, which is the reason for the presence of the max function.

In carrying out the simulation, some particularly interesting, if not

surprising, results were obtained. Three different values of N were used in

computing ,N' namely N = 1, 10, and 20. In each case, the algorithms exhibited

very similar behavior, with the exception of the ordinary gain scaling algo-

rithm. In fact, it was found that the performances of Jazwinski's adaptive

Q-estimator yielded results identical with the adaptive age-weighting algo-

rithm. Further, identical results were also obtained with the adaptive forms

of the two modified gain scaling algorithms and the additive gain term approach

of Schmidt. However, some small differences were noted between these two sets

of performances. The simulation results are shown for each N in Figures 4.4,

4.5, and 4.6, respectively.

Figure 4.4a shows the estimate error and ±+1 curves for Jazwinski's

Q-estimator and adaptive age-weighting with N = 1. Here, 64.84% of the 384

estimates are within the computed la of the true value. Very similar estimate

error behavior is shown in Figure 4.4b for the modified gain scaling algo-

rithms and additive gain term technique. Although the performances are nearly

the same for the two sets of plots, in this latter case only 59.35% of the

384 estimates are within la of the true value. On this basis the adaptive

forms of the state noise covariance and age-weighting algorithms appear to

offer greater confidence in their associated estimates. This suggestion

seems to be further substantiated by Figures 4.5a and 4.5b. Here the same

type of information is plotted as in Figures 4.4, but now N = 10. The
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percentages of the 384 points lying within +±1t of the mean are 55.99% and

50.78% respectively for Figures 4.5a and 4.5b. The same trend is present

for the case where N = 20, Figures 4.6a and b. Here the respective percentages

are 59.9% and 51.30%. Thus the implication is that the former algorithms

Offer greater confidence, as measured by the computed covariance.

Another notable characteristic is present in each of Figures 4.5a and

4.5b. Close examination suggests the appearance of the model error bias,

since the majority of the error values appear above the expected zero value

on both sets of plots. This implies that when more residuals are used in

forming yN' the bias errors have more opportunity to affect the estimate.

Increasing the residual sample size to N = 20 yields the plots shown in

Figures 4.6 which confirm this suspicion. In retrospect this should not be

surprising; as N - 0 the adaptive algorithms cease to operate, and the bias

errors dominate producing divergence of the estimate.

For each of the values of N = 1, 10, 20, the adaptive form of the

ordinary gain scaling algorithm yields the results plotted in Figures 4.4c,

4.5c, and 4.6c. Clearly these results are unacceptable. Initially the error

variance is large; hence the adaptive algorithm obtains no information from

the residuals since yN is generally small and hence (4.6.3c) produces bk = i.

As the process continues, YN tends to increase, but the sensitivity of the

algorithm is simply not sufficient to control the divergence of the estimate.

There appears to be a simple explanation for this. For the adaptive form of

each algorithm consider the sensitivity of the gain to changes in the residual

sample, Ny This is determined by using the appropriate member of equations

(4.6.3) in forming the corresponding gain, and then taking the partial deriva-

tive with respect to yN. In all but the case of the ordinary gain scaling

algorithm, the partial derivative is
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DK _HU

For the ordinary gain scaling,

DK 1
DYN P (4.6.5)

From these equations the reason for the very different behavior should be

apparent. First, note that when the residuals are very small the sensitivity

given by (4.6.4).is very high. This is desirable since the gain values then

respond quickly to changes in yN However, for gain scaling, a similar

sensitivity requires that P be very small. This is exactly the type of

behavior displayed in Figure 4.6c. Only when the.error variance has decreased

significantly does the adaptive feature begin to operate. Thus based upon

the indicated performance, the ordinary gain scaling algorithm will be dis-

missed from further consideration as a viable filtering algorithm.

No discussion has been given yet concerning the computed values of

the state noise variance or suboptimal filter parameters. An obvious approach

is simply to "shotgun" the reader with a set of some 21 graphs of estimation

curves and then pick through the data a "pellet" at a time. A preferred

approach, and the one followed here, is.to offer a representative sample and

then to note certain trends determined from examination of this and previous

data. In this manner we hope to avoid "blowing the reader's mind" * and

still provide a further measure of insight into the behavior and relationships

of the algorithms.

We proceed by offering, as the representative sample, plots of the

state noise standard deviation, K _ vE, given in Figures 4.7a through c.

Figure 4.7a gives the values of K determined from Jazwinski's Q-estimator

* This obvious pun could not be resisted.
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based upon single residuals (N = I for yN). During the initial phase of

operation, while the state error covariance is reasonably large, few non-

zero values of Q are computed. After 800 seconds, the error covariance has

decreased, and there is a high frequency of non-zero estimates. In Figure

4.7b, the values of K are shown based upon a 10-residual sample size (. = 1x

for yN ). Here both the frequency and magnitude of computed values of K are

less than for the single residual case. Figure 4.7c continues the trend.

In all cases the estimated values of Q clearly result in the desired increases

of the la curves of Figures 4.4a, 4.5a, and 4.6a. Note, however, that as

the residual sample size, N, increases, the state estimate bias error becomes

more prominent. As pointed out earlier, as N - o, we eventually have no

Q-estimates being produced, and thus the state estimate diverges.

For the suboptimal parameters, excluding ordinary gain scaling as

stated earlier, similar results have been consistently obtained. Of. course,

the limiting values are different; however, the parameter estimates show the

same random "spike" behavior as those for K. Similarly, the frequency and

magnitude of the values decrease with increasing N, resulting in eventual

dominance of the bias error in the state estimate. Further evidence of

similar performance for the suboptimal parameter adaptive estimation is

given by the similarities of the error curves in Figures 4.4-4.6. If signifi-

cant differences existed in the adaptive computation, these would also.be

manifested as significant differences in the various error and 1c curves. On

this basis one may conclude -- and the estimated parameter data bear this

out -- that no fundamental differences exist in the performance of

Jazwinski's adaptive state noise covariance estimator and the remaining

adaptive suboptimal parameter algorithms for this scalar example. (This

last qualification is important and will be discussed in section 4.7.)
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Limited Memory Filter. Figures 4.8a through 4.8c show the estimate

error for Jazwinski's limited memory filter. The figures correspond to the

values of the "memory length," i.e., the number of observations processed

between applications of the limited memory updates. Thus memory lengths of

1, 10, and 20 observations are reflected in the performance given by Figures

4.8a, b, and c, respectively.

In Figure 4.8a the filter follows the observations. Comparison with

Figure 4.2e clearly indicates identical behavior, as expected, with the

corresponding steady state covariance, P = aD .

For N = 10 the estimate error is plotted in Figure 4.8b. In this case

the bias error appears as an excess of points above the time axis. However,

toward the end of the interval, the central tendency is back toward zero mean.

To investigate this further, the case of a 20-observation memory was run. The

results appear in Figure 4.8c. As expected, the bias effects are even more

pronounced. Indeed, if the memory size is made as long as the complete ob-

servation period, the performance is simply that obtained for no error

compensation; i.e.,.the estimate error grows without bound.

In both 4.8b and c the typical behavior of the covariance may be

noted. This is expressed as the saw-tooth form of the ±l+ curves. Each

peak corresponds to an increase in the variance produced by the limited

memory updated. After each update, the variance begins decreasing in accord-

ance with the operation of the ordinary Kalman filter equations. The width

of each of the saw-tooth pulses is therefore directly proportional to the

memory length.

The accuracies obtained with the limited memory filter are generally

on the order of those obtained by the adaptive forms of the suboptimal
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algorithms. However, based on the numerical results, the memory length must

be smaller than the residual sample size used in the adaptive algorithms.

For this scalar problem the limited memory filter requires no more

computational effort than the other adaptive forms. In vector problems

involving many state elements, the computational load becomes quite severe

due to the required matrix inverses. For this reason the limited memory

filter loses its attractiveness for use in more complex problems.

Sequential Estimation of the State Noise Covariance. We turn now to

the performance of the sequential estimator for Q. Initial runs of 3840

seconds were made using a ptioAL values for the error variance, S = E{ 2 },

the residual error variance, T = E{02), and the initial value of Q as follows:

So = 1.0 (m/sec) 4

T o =A 12 = ( - ) 2

Qo = 0. (m/sec) 2

The performance was slightly better than for Jazwinski's adaptive Q-estimator,

although the bias error was apparent. The estimated values of Q took some

time to "settle." This appeared to occur near the end of the interval. To

investigate this further, the interval was doubled to 7680 seconds; the

results are shown in Figures 4.9a and b, which show the estimate errors for

p and estimates of Q respectively. Also shown are the corresponding s-error

la curves. The la value for the p error appears to have a mean of approxi-

mately .04 m/sec, with 70.05% of the error being within lo. The corresponding

value of K = v/ is around .015 m/sec. At the final time, the confidence in

the estimate of Q is reflected by a la value of Ys = .027 (m/sec) 2 . The

data indicated that all the Q-estimates lie under the vs curve, suggesting a

decrease in the a pI,4ti S. Though not immediately obvious, close examination



140

.07

0-. 035 - VI A k-,

-.07 -
2000 4000 6000

Time (secs)

4.9a Range Rate Error, p

.05

2000 4000 6000 Time (secs)

4.9b Standard.Deviation, K

Figure 4.9 Range Rate Error, p, and State Noise

Standard Deviation, K, for S = 1 (m/sec)4



141

of the lo-curve and the K-curve reveals a slight trend to increasing values.

This is not surprising since we know the actual error is increasing, (the

bias error is obvious here in Figure 4.9a), and hence the q-filter is simply

trying to adapt to this. Further, one can expect that divergence of ' will

eventually occur as the Q-filter saturates, and no new information is added.

Recall that this is due to the assumption that the error is a stationary

random process, i.e., constant Q. An obvious remedy is to include a process

(state) noise variance term in the Q-estimator, as suggested by equation

(3.6.41). Another alternative is to improve the assumed model so that the

assumption of constant Q is more accurate. This approach is considered in

the discussion on estimating model errors.

A notable aspect of the sequential Q-filter performance is the fact

that the la curve has been found not to decrease as rapidly as for the ordinary

Kalman filter. Consideration of the constraint on the estimate, i.e., 0 > 0,

reminds one that the filter is minimum variance only in the a postc 'ioti sense.

Thus the variance cannot decrease any more rapidly due to this constraint on

Q. Further, large values of .' result in slow decrease in ;.. This behavior

happens to hold an advantage. Since the attendant filter does not decrease

as rapidly, the filter operates for a longer period of time before saturating.

On the other hand, the estimates take longer to "settle down." Some idea of

the effect of different a pAlo u values of the error variance, S, may be

gained from Figures 4.10 and 4.11. Figures 4.10a and b show the error

performance and estimates of Q for so = S(to) = .01(m/sec) 4 . The performance

of the range rate and Q estimates appears to be about the same as those in

Figures 4.9a and b, although now 64.2% of the error is within 1. Similarly,

at the final time the computed standard deviation in the estimate of c is

7 - .026(m/sec) 2
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Figures 4.11a and b show the p error and Q estimates for So =

10-4 (m/s-c)". Here the range rate estimate is not very good. A large bias

appears early, although this decreases as larger Q-estimates are obtained

(Figure 4.11b). Still, only 30.08% of the estimates lie under the la curve.

At the end of the simulation v7 = .9,;3 x 1O-2(m/sc:; .

A number of runs were made to investigate the effects of different

a p.i oti values of 'P. The results indicated that the a p, ~ic value has little

effect upon both the estimates of ' and ,. Using the algorithm of equation

(3.6.35), the estimated values of 'i decreased monotonically from 21.94 (im/sec)"

to .2571 (m/sec)". Presumably if more points were taken, this would decrease

even further. The modification, given by equation (3.6.36) of using a limited

batch of A-residuals was not investigated for this problem, but is treated in

the next chapter.

Estimation of Model Errors. Suppose the assumption of a constant

closure rate is modified so as to be a linear function of time. We thus assume

the model error may be approximated by equation (3.3.6). If we further assume

co = 0 and c E c1 , then the range rate model becomes

+ C Atk k-1 Ck-1

Ck k-1 +W k-1

where ck is unknown, and is to be estimated along with pk' The term w' is a

process noise term added to c and represents fundamental uncertainties in

knowledge of c. Its statistics are E{w j} = 0 and E{w "2  = q. There are now

two state variables, and the problem may be cast in the canonical form as

k- [ - k,k-1 xk-1 + zk-1k At] k-i + k-1

(4.6.7)
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In this recast form, the approach is to use the standard minimum variance

filter with the corresponding H-matrix being

S= [1 o] (4.6.8)

In light of this extended form, it is important to raise the question of

observability. Consider the information matrix given by equation (1. .21)

with j = 1.

T 'T T -1kT H R H D 6k,l i,k i i i iki=1

Substituting for 4, H, and R,

k 1 0Li (100) [1 0] [1 (ti-tk

k, (t t-t ) 1 1
i=1 .k

= k ti-tk (t.-t) 2 (4.6.10)

Forming the quadratic form using an arbitrary 2-vector, z, yields

z Tk, 100k Z [zi + z2(t - tk)]2 (4.6.1)
i=1

which is clearly positive for all non-zero values, of z and k > 1. Thus our

assumed dynamics represent a completely observable system. Note that this

would not be true were we interested only in c, since the observations do

not relate directly to c. Rather, information about c is obtained only

through its correlation with p. Thus in estimating c it is the cross-

correlation, c (normalized by the variances a. 2 and R) which comprises theP

gain, K , for c,

K = r/(a 2  + R) (4.6. 12)

We note in passing that the system is also completely controllable

since
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Ak, 0 q Yk > 0
i1 k(t -t.) 1

which follows from (1.3.25).

In carrying out the simulations for this formulation, the a p. -tott

values of c = o and E{2 1} = 1.O(m/sec 2 ) 2 are used. Initial results with

Q = E{ww'} = 0 are shown in Figure 4.12a. The performance is such that as

the error covariance decreases, so does the gain, and hence the constant c

tends to a particular value. However, the true error actually changes in a

non-linear manner so the bias error begins to dominate, after about 800 seconds.

(Only 26.82% of the 384 points are within icy of the expected value.) This,

of course, is due to the fact that Q = o. Now examining the c1-curve suggests

that a reasonable la steady-state value of .02 m/sec for p might be acceptable.

The value of Q which yields this la-value may be found using the.covariance

prediction and update equations. For the prediction,

or

I Pl2 At ][p I P12 1 0 0 0
p21 P22 0 1 p21 P22"A 1 0 q 4.6.1 )

Carrying out the multiplication yields

P11 = P11 + 2p12 At + P22 At2 (4.6.14a)

p12 =P12 + P22 At 4.6.1)

P22 P22 + q (4..14C

where the symmetry of P is recognized as p12 = p21.

For the update equation,



147

.08-

0

-.08.
1000 2000 3000 T mc (Oc~.)

4.12a Q = 0 (m/see 2 ) 2

.08-

S-.0 I

1000 2000 3000 Time (secs)

4.12b Q = 10-10 (m/sec 2 ) 2

00

3*

-.08- I I I
1000 2000 3000 Time (secs)

4.12c Q = 10-7(m/sec 2 ) 2

Figure 4.12 Range Rate Error Linear Approximation

for Various Constant Q Values



148

P =(1 -K H) P

[1 0] [ki 0] [P11 P12

S 1  k 2  0 Lp21 P22

or

[ P111 P121 (1-k1) P11 (1-k) P12

P21 p22 -k2  11 + P21 -k2 P12 + P22 (4.6.15)

Employing the definition of K, and again recognizing the symmetry of P,

P11 = 1 R P11 - 11

1 + R pil + R (4.6.16a)

p12 = 1 pi P12 R p12

11 + R P11 + R (4.6.16b)

2
P12

P22 _ + P22 (4.6.16c)
P11 + R

Solving ( 4 . 6 .16a) for ?11 gives

P11 = p11 R/(R - p11) (4.6.17)

For steady state conditions, the p.. in (4.6.14) equal the p..i in (4.6.16).

Substituting (4.6.14c) into (4.6.16c) and solving for pi2 yields

12 = Vq( 11 + R) (4.6.18)

Substituting this into (4.6.16b) gives the equation for pl2 as

1'1 I q(7>1 + l ) /( 11 + /) (4.6. 19)

Next equate (4.7.14b) and (4.6.18) , and substitute (4...Ih) for 1,1, to obtain

pi1 + R
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Finally, use (4.6.17), (4.6.19), and (4.6.20) to solve (4.6.14a) for q. The

result is

P114
q = (4.6.21)

At 2 (R p11)(2R- P11) 2

Using the suggested steady state value of a = .02 m/sec, then 2 =02

4 x 10-"(m/sec) 2 and, approximately,

q - .7x 10 - (nm/.W-C2) 2

The values of A/. and I' are taken from Table 4.1.

Using this value of q along with the other initial and a I.,tt.i'ii values

(c = 0 and E{ 2 } = 1.0 Ir2/sec4 ) produces the results shown in Figure 4.12b.

Here definite improvement is achieved as expected. 74.74% of the 384 points

are within the steady state la value of .0209 m/sec as opposed to the 26.82%

associated with Figure 4.12a. Notable characteristics are the apparent

oscillations of the error, and the fact that the majority of points lie above

the time axis. Oscillatory error behavior is known to be characteristic of

optimal approximations, e.g., (48, 75), and here optimality is clearly an

objective. The latter characteristic implies, as in earlier runs, that the

bias error is becoming apparent. An obvious suggestion is to increase q.

The results for q = .1 x 10-6(m/sec2 ) 2 are shown in Figure 4.12c. This

arbitrary increase in q produces a steady state la value of .053 m/sec, and

bounds 83.33% of the error points. In light of these results, it appears that

the optimum q is probably between .1 x 10-(m/sec 2 ) 2 and .1 x 10-6(m/sec2)

To pursue the question of optimum Q, and also to investigate the

sequential Q estimation algorithm further, the idea of estimating Q arises.

However, in applying the sequential algorithm strictly to the formulation

given by (4.6.7) the observability problem is brought out again, this time

with regard to estimating Q. In writing the information matrix, T ,
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corresponding to the estimation of Q one finds that T = o. Because of the

way the problem is formulated, the equation for r2 does not contain expli-

citly. Thus in forming To , the measurement mapping term is zero for all time,

and hence so is T . In other words, the term corresponding to H in equation

(1.3.21) is zero. Hence, the Q corresponding to c is not observable.

Consider the formulation of the original problem as a differential

equation. In vector form

x=A x+Bu

or

where the identifications are obvious. The term, u, is a vrocess noise term

with the statistics E{u} = 0 and E{u2 } = q 6(t-T). Now the solution to this

differential form is clearly not (4.6.7), but rather

p 1 (t -t t k) p L k 1 *(tkT) 0] ud
- k -- _ (4. . )

Taking the approach of equation (1.2.30), where u is assumed constant over

[tk, tk-l], yields

Xk = 'k,k-1 Xk + 'k,k-1 Wk-1 (4.6.24)

where

At 1 . 0
k,k-1  Wk-1

0 At j Uk-1 (4.6. 25)

It is important to note that one form, (4.6.7) or (4.6.24), is not necessarily

more correct than the other. In both cases uncertainty has been introduced

abitka)tiy; hence the measure of correctness rests in the choce of the
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model, and ultimately in the performance of the estimation process. For our

purposes here (4.6.24) is indeed necessary since this appears to be the only

way in which we can "get a handle" on Q.

To bring this approach to fruition, use (4.6.24) to form the error

covariance prediction equation as

P = c P DT + F Q F

where

FAAt2 AAt 0 0 At 0

At 2 At 3  
At2

Now in forming the measurement equation to be used in the Q estimation we

obtain

(r2 - q H _ )k = (H1 pQ FT HT + 0)k

or

-- A t 4

A 4 "k A 
" '

Correspondingly, the information, TQ , is no longer zero,

TQ  k T At 8  (4.6. S)
k,l 16

and we have complete observability with respect to the A.

While (4.6.27) is certainly a viable approach, it involves an approxi-

mation, namely that u is constant over the interval [tk, Akl]. This

assumption can be dispensed with by forming FI T in accordance with equation

(1.2.35a). Thus,

pFQT =D (tk , s) B(s) q 6(s-r) BT (r) T(tk, r) dr dc

k-1
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Carrying out the first integration,

= k 1 At 0 0 1 0
FQT /" ds

0 1 0 q At 1
k-1

or

At3  At 2

3 2
QrT = t  (4.6. )

The difference between (4.6.29) and (4.6.26) is approximately the factor, At.

Forming the measurement equation we have

At3  6.)
k 3 k k

and similarly the information

TQ k T At > 0 (4. 1)
k,l 9

insures complete observability. Owing simply to the more rigorous approach,

(4.6.30) will be used for the estimation of q.

Using this alternate formulation, Figures 4.13 through 4.15 show the

estimation performance for the three a piot(' values, s o = 0o 8, -1(O0, and

10-12 (/see 2 ) 4, respectively. The results indicate increasing estimation

accuracy of the range rate with decreasing a Ip oni values of S. In particu-

lar, for So = 10- (m/sec
2 )4 , 74.22% of the range rate error values are less

than the lo curve (Figures4.13a). From Figure 4.13b the final value of a is

approximately 4.5 x 10 -(m/sec 2 ) 2. In Figure 4.14a, S o = -10(m s& 2 ) ,

78.78% of the range rate error points are less than lo, and the maximum value

of q (Figure 4.14b) is approximately 2. x 10-8(m/sec 2) 2. For S o = 102,

80.1% of the range rate errors are within is of the expected zero mean .(Figure

4.15a). The maximum q-value is approximately 1.7 x 10-'0(mrsec2 ) 2 (Figure
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4 .15a). While the actual magnitudes of the Q-estimates become smaller as

the a ptuioai S is decreased, within each case the sequence of Q values

increases. This, of course, results in increasing the error variance of p.

As before, this may be attributed to the error growth, for while the error

has been reduced, it has not been eliminated.

Note that for S o = 10-8(m/sec2 ) 4 , comparatively large values of Q

are obtained. This is due to the fact that initially large values of the

gain are computed thus tending to make the values of c"follow" the observa-

tions. The result is that the erratic behavior of c from one observation to

the next appears to be quite random. The sequential Q-estimator sees this

and produces correspondingly large values of Q. As smaller values of )o

are employed, this effect becomes less, thus allowing the values of a to

become more stable. Figures 4.14a and 4.15a show this to some extent. The

estimates of Q do not increase quite as rapidly; their magnitudes are less,

and the values tend to reach their maximums sooner.

From these results it is apparent that various a pjiuo t values of S

have definite effects upon the values of the Q-estimates. However, through

reasonably careful selection of S o , practical filter operation can be realized.

4.7 Summary and Conclusions

In this chapter the salient aspects of the estimation techniques

found in Chapters 2 and 3 have been investigated, and the algorithms applied

to the rendezvous problem formulated in Chapter 1. Explicit closed form

expressions have been obtained, in whole or in part, for the age-weighting,

ordinary and modified gain scaling, additive gain term, and limited memory

filter algorithms. For these as well as all the other algorithms, numerical

results have been obtained.
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Certain equivalences were shown to exist in both the adaptive and

non-adaptive forms of the age-weighting, modified gain scalinq, addit.ive !laii

term, and state noise covariance algorithms. While these, as well as the

limited memory algorithm, were found to be acceptable estimators, the ordinary

gain scaling technique (b = constant) was shown to be unacceptable, in both

its adaptive and non-adaptive form.

The adaptive techniques, based on Jazwinski's maximum likelihood method

as well as the sequential Q-estimator, are seen to be a step closer to accurate

estimation. The techniques based on Jazwinski's approach have the particular

advantages of being both simple and completely adaptive. The primary dis-

advantage is the fact that usually smoothing must be introduced in the form

of a residual sample, thus destroying the optimality of the method.

The Kalman filter for sequentially estimating the state noise co-

variance appears to give slightly better performance than Jazwinski's adaptive

estimator. Within the stated assumptions, the method is a constrained minimum

variance estimator. However, the technique is more complex to implement.

Further, the assumption of E{qe) = 0 destroys the optimality. If, in fact,

Q does not represent a stationary process, then the assumption of constant Q

introduces modeling error, thus requiring more accurate modeling or some

technique to prevent saturation of the Q-filter.

The estimation of modeling errors has been shown to be particularly

useful in that this approach attempts, in some way, to improve the dynamic

model. Invariably the chosen structure is not sufficiently exact to allow

the filter to operate to saturation. Thus, some model error compensation

technique must still be employed, e.g., state noise covariance. In this

regard, the sequential state noise covariance estimator has been shown to be

effective.
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The rendezvous problem investigated here involves a single state

variable, and as such, the information and comparisons presented must be

accepted in this light. When the algorithms are extended to state vectors

of more than one variable, some of the algorithms lose their similarities.

In particular, the modified gain scaling, additive gain term, and state noise

covariance algorithms in both their adaptive and non-adaptive forms produce

results which are generally different from one another. Further. Jazwinski 's

adaptive Q-estimator requires a pseudo-inverse in comiputing a ,'-matrix. This

disadvantage is not suffered by the sequential q.-estimalor. The limited memory

filter is, in an a po6stcLu ,o sense, an optimal estimator. However, applied

to the vector case, it requires considerable numerical computation. To in-

vestigate these algorithms as applied to the vector case of more than one

variable is an undertaking of considerably greater scope. Further, the

insight provided by the closed-form expressions for many of the algorithms

would be difficult, if not impractical, to obtain because of the greater

problem complexity.

Based in general upon the results obtained in this chapter, the model

error estimation technique and the sequential state noise covariance estimator

have been selected for application to a multi-element state vector problem.

The choice of this approach is due to the inherent potential for effective

application to more complex problems. As indicated in Chapter 1, the problem

is the orbit determination of a low thrust space vehicle which is subject to

thrusting errors. This investigation is carried out in the next chapter.



Chapter 5

APPLICATIONS: LOW THRUST VEHICLE

ORBIT DETERMINATION

5.1 Introduction

This chapter is concerned with the problem of estimating the state

of a continuously thrusting, solar electric propulsion (SEP) space vehicle.

The problem is compounded by the fact that the propulsion system is subject

to certain mechanization and control errors. While errors arise from various

other sources (49), for the SEP vehicle, the primary errors are due to

anomalies in the propulsion system. Our aim here is to investigate the

practicality of estimating not only the vehicle state, but the corresponding

thrust acceleration errors as well.

A number of investigators have considered low thrust SEP missions.

In (50), Rourke and Jordan investigated guidance and navigation approaches

for two SEP interplanetary missions, although model errors were not estimated.

Russell and Curkendall (36) obtained effective results by using piecewise

constant functions to model acceleration errors. Tapley and Hagar investi-

gated the estimation of acceleration errors (34) as well as inertial measuring

unit errors (35) for an SEP vehicle. These approaches employed Kalman filter-

ing utilizing the differential equation for F. Errors were successfully

modeled as first and second order Gauss-Markov processes, although Earth

rotational dynamics were not considered. Carpenter and Pitkin (37) investi-

gated orbit determination for an SEP vehicle. Here the total thrust

acceleration was assumed to be unknown, but approximated as the solution

159
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to a set of uncoupled linear differential equations. However, the approach

followed a least squares linearized simultaneous solution with no statistical

measures being employed.

As indicated in the previous chapter, our approach here is to assume

a structure for the acceleration errors. Then, employing the selected filter-

ing equations, the parameters associated with the assumed model error structure,

as well as the position and velocity of the vehicle are to be estimated.

In the following sections, the specific dynamics and estimation

equations are developed. Five different model structures are investigated

as to their ability to represent the acceleration errors. Each.is developed

separately, and numerical simulations are carried out to obtain comparative

estimation performance. Corresponding to each of these structures, purely

random errors are also assumed to be present. Associated covariances are

either input, or estimated using the sequential Q-estimator.

5.2 Problem Description

In the problem considered, the motion of the solar electric spacecraft

is assumed to be influenced by random errors in the thrust acceleration vector.

The nominal SEP mission simulation is initiated at escape from the Earth's

sphere of influence and terminates with a flyby of the asteroid Eros. En-

counter with Eros occurs at a distance of 1.45 astronomical units (a.u.),

152 days after heliocentric injection.

If the only central force attraction considered is the sun, the

equations of motion for the SEP spacecraft are

V _1' T r + T-
Ir[ 3
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where, as shown in Figure 5.1, r is a 3-vector of heliocentric position com-

ponents, x, Y, z; v is a 3-vector of heliocentric velocity components , I,

; Irl is the magnitude of r; and p is the gravitational parameter of the sun.

T is the heliocentric thrust acceleration vector composed of the design thrust

acceleration,. T, as well as thrust acceleration errors, rm(t), from a number

of sources (beam voltage and current, grid warpage, deadband control errors,

etc.). The heliocentric components of T, [Tx Ty Tz ] , may be expressed in

a vehicle centered, orbit frame as [T TY T I T , where the two vectors are

related by

T cos $ -sin i 0 T TX x X
T = T = sin cos 0 T A= Ty

T 0 0 1 T T

where ' is the heliocentric orientation angle (see Figure 5.1). The two

reference frames are oriented such that the z and z axes are parallel; the

X and x axes form the angle, 'q, as do the Y and y axes, with

cos ' = X/(X2 + y2) , sin = Y/(X2 + y2) 2

5.3 Acceleration Error Simulation

The SEP spacecraft is driven by an electric engine which in turn

obtains its power from solar energy conversion devices, i.e., solar cells.

While the actual solar flux density follows the inverse-square law, for

outbound missions the actual available thruster power varies as r " . This

is due to improved efficiency of the solar cells at lower temperatures (50, 2).

In addition to the thruster power variations, the propellant mass flow rate,

A, affects the magnitude of the thrust acceleration. In particular the

magnitude, a, of the thrust acceleration, T, is given (50, 3) as
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SIb
a(t) (SP

Mgo 5.3.1)

where Isp is the engine specific impulse, go is sea level Earth gravitational

acceleration, and M is the instantaneous spacecraft mass. These quantities in

turn are functions of numerous propulsion system parameters, all with various

uncertainties. Some of these have been mentioned -- beam voltage and current,

grid warpage, and deadband control errors.

Regardless of the sources of error, their effect is to produce un-

certainties in the thrust acceleration program. For the orbit determination

function, we are interested in the errors at this total level, and it is at

this level we propose to account for them. Now since we are not concerned

here with the guidance problem, the design thrust program is arbitrary. Hence,

for simulation purposes, a constant design thrust acceleration magnitude is

selected. Further, the program is such that the nominal thrust acceleration

vector, '!', is oriented colinear with the y-axis of the orbital frame. The

true thrust acceleration vector, 'I, can be resolved into its orbit frame

components, TI' y', and 2'z, in terms of its magnitude, a, and the clock and

cone angles, 0 and y, respectively (see Figure 5.1). Thus,

T sin y cos

Tg a cos y ('5. f)

Tz  sin y. sin j

and

a = a* + 6a (5..5)

where a' is the nominal constant thrust acceleration magnitude and La is the

associated error. With zero error, the thrust acceleration is nominal. In

this case,
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[O I
In the presence of thrusting errors, y, , and Sa are non-zero thus producing

an off-nominal thrust acceleration vector.

The acceleration error magnitude is simulated using

6a = 6a o sin wt + ua (5.3.5)

where a0o and w are constants and where u is a random variable with the

statistics

E{u } = 0 , E{u 2 = 2 (5.3.6)a a a

In the error simulation the instantaneous values of the pointing angles, y

and O, are assumed to be related as shown in Figure 5.2. This figure shows

the x-z plane of the orbital frame. Assuming the cone angle, y, is small,

the radius of the circle is the maximum deviation, sin -y - , of the normal-

ized thrust vector* from its nominal position co-aligned with the y-axis.

Next, the quantity

d -- s(t - tb) (5.3. 7)

is the distance that the tip of the normalized thrust vector has moved since

it last touched the boundary given by the circle of radius y. The rate, s,

is simulated as a constant plus an additive noise component obtained from a

normal distribution, N(O, as2); t is the current mission time, and tb is the

time the boundary circle was last touched by the normalized thrust vector.

The angle, p, is obtained by sampling from a uniform distribution, :o, a 2).

With this information the instantaneous values of y and 0 can be obtained at

each point in time. To clarify the process, the simulation logic is given

* That is, a unit vector in the direction of the thrust vector.
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in Figure 5.3. Assume the initial values of y, (I, :, tb, 0, and o) and ao,

are gliven. To determine the values of y anid ( at /kI the distance, " is

first computed. Using the law of cosines, the angles yk and Ok are deter-

mined. Then 6k is computed by adding or subtracting ck according to the sign

of (. Next a tes.t is made to determine if the computed yk lies within the

boundary circle. If it does, then sample values from the normal distributions,

N(O, ay2 ) and N(O, a0
2 ) are added to yk and 0k respectively. If the test is

not passed, then new values of e, p, s, and tb are found. Normally distributed

noise is then added to y k and 0k as before. For each point in mission simu-

lation time, the sequence is repeated to obtain appropriate simulation values

for the pointing angles.

5.4 Observation Geometry and Equations

Two observation types are employed for estimating the state vector.

These are the radar-measured range rate, p, of the vehicle, and the angle,

C, formed by the lines-of-sight to the Earth and to a specified navigation

star (see Figure 5.4). In computing range-rate, the motion of the tracking

station, due to Earth rotation* as well as orbital revolution, is taken into

account.

Consider Figure 5.4. The range vector can be expressed as

p = r - r = r - R - R (54.
s s

where r is the heliocentric position vector of the vehicle; r is the helio-

centric position vector of the tracking station; R is the geocentric position

vector of the station; and R is the heliocentric position vector of the

Earth. In the figure, the reference frame X'Y'z~ is a geocentric frame

* The diurnal effects of station motion have been shown to provide a
significant contribution in obtaining accurate orbit determination (51, 34).
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aligned with xyz. The X and x' axes are assumed to be aligned, pointing to

the First Point of Aires, T. X"Y"z" is a geocentric frame whose X"-y" plane

contains the equator. Thus, x"Y"Z" is rotated about x' through the angle,

c, the obliquity of the ecliptic (E 23 0). The heliocentric components of

R are simply

Re e IRe sin (5.. )

where IRje is the magnitude of R , and 5 is the Earth's heliocentric orienta-

tion angle. The heliocentric components of RI7 are X , Y , and : ; they are
S S S

given by

S S

where

1 0 0
E = 0 0 E -in l C0)

0 cosin c - co.

and

Cos cos
S S S

IS "= i/i' I Scos % sin (5.
sin C

The angle, q)s, is the geographic latitude of the tracking station, and \ is

the right ascension of the station.

Now taking the derivative of (5.4.1) with respect to time gives

S S e

0 0
-R - Q x R - R - w x R (5 6)s s s e e e
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where ( ) is the relative derivative, a~ is the angular velocity of the

station, and wc is the orbital velocity of the Earth. To simplify the com-

putational process, the assumption is made that the Earth's orbit is circular

and hence we and Re are constant. The angular velocity, 2s' is composed of

the sidereal rotation rate, w , and w :
s e

s s e

= E cs" + w (5.4. 7,

s eW" is aligned with z" and w e is aligned with Z. Thus

S

with

7 (E W " + W) x R + W x R (S. S"s s e s e e

Multiplying out E W " gives

0

Ws = -w " sin E (5.4.9)

W " Cos CS

Using (5.4.2) - (5.4.5), (5.4.7) and (5.4.9), equation (5.4.8) becomes

( - W " cos c) X - W sin E Ye s s s

r = + " cos E) X + R
s e s s e

S" sin E X
s s

or

([ Cos C - 0) coo sin - oe E I£ sn n

r = [ (co + " co c) coo 4 Cos X

S" !in E, cos cos
S S

- e s"n C+ e e cos 5.4.2
0
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with X = I s  t and r = w I t. Thus the desired range rate may be found

as the magnitude, p, of (5.4.1).

The star-vehicle-Earth angle is measured on board the spacecraft. It

is found simply as

S= co- 1  * (r? - r)

For each simulated observation, random noise, v, is added to the
1

deterministic value by sampling from a normal distribution. If the discrete

observations at time t. are specified generically as s2, the associated statis-

tics for v , are

E{v } = 0 , V} = R 6

5.5 Error Compensation Models

As indicated in section 5.2, the simulated thrust acceleration is

composed of a nominal or programmed thrust acceleration, !', -, plus an error

component, m(t). The nominal dynamic model assumed for the estimation process

is essentially the same as equation (5.2.1). Of course, the accelerating

error vector, m(t), is unknown. We assume an approximation, e(t) , to rK-(),

where e(t) is modeled as a stochastic process with {e(t)} satisfying one of

several possible first or second order differential equations. The elements

of e(t) are the three orthogonal components of the acceleration error, and

are expressed in the orbital frame.

While the general form given by equation (3.4.6) might be employed to

obtain a single representation for the error, the selection and use of

specific models offers the opportunity to investigate the effects of different

structures, i.e., sAt'uctuta sesitivity. For this reason five different



172

models are employed: three basic forms, two of which have two separate

configurations. These are described in the following paragraphs.

Model 0. In this model the acceleration error components are assumed

to be represented as purely random process noise. Thus only a selected state

noise covariance matrix is employed to maintain a positive definite error

covariance, and hence filter operation, and to prevent divergence. In this

case we define the estimated state vector to be X' = [2' ? ], and the

corresponding differential equations are

r= V

-- + T + Mu (5.5.1)

M is given by (5.2.2), and u is random state noise representinq the accelera-

tion errors. The a pl4oi statistics for u are

/'{u } = 0 , ,'{u 1(t) u ()} -q (t) 6 (t- )

where Z c{x, /, .}.

Model 1. The thrust acceleration error component along the orbit

frame y-axis (in the direction of the nominal thrust) is approximated by a

first order Markov process; the x- and -- components, in the orbit frame, are

assumed to be purely random processes. Here the nominal differential equations

are

P r + T^ + M ei

with the addition of one of the following two configurations:

a) eu (5.5.

b) e = -e + u a = u (5.5
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The random variables u , u , u , and u have the statisticsX z C

E{u l = 0 , E{u (t) U(t)} = ql(t) 6(t-T)

where 1 e{x, z, e, a}. For each of the configurations a) or b) above, the

corresponding state vectors to be estimated are

X = or X = (5.5. )

L -

respectively.

Model 2. The thrust acceleration error component along the orbit

frame y-axis is approximated by a second order Markov process. The .-- and :-

components are again assumed to be purely random elements. The corresponding

nominal differential equations are then

= r+T + M eu

Uz

e =g

plus one of the following configurations:

a) g = u(55

b) g = -e + u

The random variables ux, uz, ug, and u have the a utioh statistics

E{u l } = 0 , E{u (t) U (T)} = q 1 (t) 6(t-T)

where 1 E{x, z, g, B}. For each of these above configurations the correspond-

ing state vectors to be estimated are



v v
= e or e

g g

respectively.

In the ensuing discussions the particular models and state vectors

will be referred to often by their model number and letter conficluration.

Thus model 2b is that described by model 2, equation (5. ;. l , and configura-

tion b), equation (.5.10).

Note that each of the above model forms seeks to approximate 'i(t) in

its own way. Model 0, of course, has a null structure as defined in section

3.3. Model la approximates rn(t) by a sequence of constants (Figure 5.5a),

model lb uses a sequence of exponentials (Figure 5.5b). Model 2a employs

straight line segments (Figure 5.5c), and 2b approximates rn(t) by a sequence

of arcs corresponding to the output of the simple harmonic oscillator.

For any of the assumed models, the state vector differential equation

can be written in the general form

5(t) = F(X, t) ( i.5. ;,

In view of (5.2.1), F(X, t) is a nonlinear vector function; hence a suitable

estimation procedure is extended form of Algorithm I. This is basically the

same as Algorithm II, except that here the integral form for Pk is replaced

with the discrete form given by (1.2.17).

In forming T, given by (1.2.17), the term FQFT is required. Two

methods for determining this are given by equations (1.2.30), (1.2.33a), and

(1.2.35a). The latter form,

tk

Q T  J D B U BT DT dT (.5. a)
tk-1
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is the more correct form, and is used exclusively when dealing with constant

input values for U 6(t-T) = E{u(t) u(T)}. In this case the elements of iU are

the terms ql where 1 is taken from one of the index sets associated with

Model 0, l, or 2. Numerical computation of FQF is performed as a simple

quadrature based on the mean value theorem of integral calculus:

FQPF= (B U BT + k- B U B k, (5..1
k k k,k-1 k-1 k-1 k,k-1 2

For the cases where the sequential Q estimation algorithm is employed,

equation (1.2.33a) is used with r given by (7.i.o0):

Ik

This form is required because the F matrix itself is used. In this case we

let u =Q, and the elements are again the terms qL with Z taken from the

appropriate index set. The numerical computation of r is carried in a manner

similar to the above, again using the mean value theorem:

k k,k-i k-) 2 (

The elements of B for all models are given in Appendix B.

5.6 Simulation Process

Figure 5.6 is a functional flow diagram of the simulation process.

It represents the logic followed by the simulation computer program. Input

data is read from an appropriate input file, and various problem parameters

and logic switches are initialized. Both the simulated and nominal trajec-

tories are numerically integrated simultaneously through one observation

interval. The simulated thrust acceleration is computed according to Figure

5.3, and the nominal thrust acceleration computed from one of the appropriate

error models of equations (5.5.1) through (5.5.10). In addition, the
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differential equation for the state transition matrix,

$(t, t.) A(t) (t, t.) (1.2.29)
3 3

is simultaneously integrated. As discussed in section 1.2, the matrix, A, is

the partial derivative of F with respect to the state, X. The elements of A

for each model are given in Appendix B.

Next the first simulated observation is computed with a random noise

component being added. (Observations are processed one at a time; hence, we

have the computational advantage of scalar observation.) The corresponding

nominal observation value is determined, and the observation mappinq matrix,

H, evaluated. The elements of H for each observation are given in Appendix C.

The estimation equations are employed to obtain the state estimate, X.

If any further observations are to be processed at this time point, the appro-

priate logic is repeated as shown in the figure.

A test is made to determine if print output is required, and if so,

the appropriate information is written. A test is also made to determine if

the final simulation time has been reached. If it has not, the process of

integration, observation, and estimation is repeated for the next and succeed-

ing observation intervals until the final time is reached. Finally, data

plotting is accomplished as determined from input data and the simulation run

terminates.

5.7 Numerical Results

In performing the various numerical simulations, a common set of basic

problem data is consistently used. This approach provides a common basis for

evaluating the estimation performance of each of the approximating models.

This set of data is given in Table 5.1. The initial conditions, position and

velocity, are the same for both the simulated and nominal trajectories. The



Initial Conditions Initial Uncertainties Thrust Acceleration Error Simulation

X .1505 x 10' km 104 km 6a, = 6% a* = 1.8 x 102 /sec 2

Y 0. km 104 km a = .6 * = 1.8 10- nm/sec 2

Z -6378. km 104 km s = .6 x 10- 6 rad/sec, a_ = .24 x 10- 7 rad/sec

X 0. m/sec 10 /se = = .001 rad, = .91 rad

7 31,743 m/sec 10 m/sec y = .01745 rad, L = .12 x 10- s Hz

Z 73.8 m/sec 103 m/sec Period of 6a = 2ir/w = 9.65 days

Observation Variances Nominal Thrust Acceleration

R. = (.5 m/sec)2 @ 1 min intervals x = z = 0 mn/sec2

RE = (7 arsec)2 @ 10 min intervals y = a* = .3 mm/sec2

Observation interval, At = 50 min (Orbital 3eference)

Tracking Station Longitude Latitude Constants

Woomera (JPL-41) 1360 53' 14" -310 22' 55" sun 327 x 1012 km 3/se 2

Goldstone (JPL-14) 2430 06' 37" 350 25' 33" e = .199 x 10-6 rad/sec

Madrid (JPL-61) 3550 45' 3" 400 25' 44" w "= .727 x 10-4 rad/sec

Navigation star unit vector elements: 9 = .5538, .7384, .384C

Table 5.1 Nominal Mission and Simulation Parameters
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observation interval is a constant 50 minutes for each observation type;

hence the corresponding variances are scaled to agree with this sampling

rate. The initial geometry is such that the Greenwich Meridian intersects

the X-axis at midnight, GMT*, forming the spacecraft initial subpoint

location.

In order to gain an idea of the acceleration error components, the

plots shown in Figures 5.7 and 5.8 were obtained. Figure 5.7 shows the error

components along each of the orbital frame axes as functions of time. Note

the periodicity of the y-component and the irregularity of the x- and z-

components. Further, the y-component is approximately three times as great

as the others. Figure 5.8 shows the trace of the thrust acceleration vector

projected on the orbital frame x-z plane. Note the approximately circular

bound of radius = .0055 mm/sec 2 . The errors are also seen to be somewhat

concentrated in the first quadrant, and rather less dense in the fourth

quadrant. As the simulation time continues beyond the 35 days shown here,

one can expect that these errors would be more uniformly distributed within

the full region.

In the following paragraphs numerical results are presented showing

estimation performance for the various models and approaches. In presenting

the data, two quantities are plotted which represent a figure of merit of

performance. These are the Euclidean norms of the error components of posi-

tion and velocity, and the square root of the trace of the appropriate

covariance submatrix elements. The ensuing discussions will refer to these

quantities as RSS (root-sum-square) and RTC (root-trace-covariance),

respectively.

* GMT = Greenwich Mean Time; see, for example, (9).
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Nominal Cases With and Without Model Error. Figures 5.9 through 5.12

show the position and velocity error norm, RSS, for the nominal data of Table

5.1, both with and without thrust acceleration modeling error, respectively.

Clearly the estimation performance in Figures 5.9 and 5.10 is erratic and

unacceptable, producing estimation errors as high as 20,000 kill and 18 m/sec.

The rapid decrease in the error covariances is illustrated by the short dashed

line, the RTC, near the origin. Figures 5.11 and 5.12 illustrate the case of

perfect modeling. Here both the actual and assumed thrust accelerations are

of constant magnitude, always directed along the orbital frame y--axis. Two

RSS curves are shown in each figure, corresponding to two different values

of the observation error variance for the star-Earth angle, ,. In both cases

the RSS values become substantially less than 2 km in position and .004 m/sec

in velocity as the estimation process proceeds.

Perhaps more interesting is the sensitivity, shown by these curves,

of the estimation process to differences in the observation error variance.

The solid line in Figures 5.11 and 5.12 represents the RSS for the nominal

(Table 5.1) value of R = (7 arcsec)'. The dashed line corresponds to an

increase of 3 arcsec resulting in R ( = (10 arcsec)2 . In both cases, of course,

each value is used for both the true (simulated) and assumed (nominal) value.

This change in the value of R illustrates a somewhat surprising sensitivity

of the estimation accuracy to this particular measurement type. For the

increased R the position RSS is more than twice that for the nominal value.

Clearly similar behavior is seen for the corresponding velocity RSS.

The sensitivity of the estimation process to R, and the problems of

actually developing equipment capable of such high accuracies prompts the

question of necessity. Are measurements indeed necessary? To answer this,

consider the information obtained from a single range-rate observation. From
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equation (1.3.21), letting j = k-I, we first make the approximation that

k,k-1 - I for small At, so that

T T -1 T -1H R- H = HT R Hk,k-1 k k k k,k-1 k k k

Dropping the subscripts and employing the p elements of H defined in Appendix

C, we have for the i - j elements corresponding to position (i, j = 1, 2, 3),

[HT R- H]j = X - ) - (X. - X .) (W p ) ]

ij 1 S1 1 Si

[(X. - X .) - (X. - X .)(0/p)]/(p2 R) (5.7.1)J sJ 3 sJ

where p is the range from the tracking station to the vehicle. x. and .
1 Sl

are elements of r and rs respectively. For the velocity elements (i, j =

4, 5, 6),

[H H].. = (X. - X .)(X. - X s)/(p 2  ) (5.7.2)
] 1 si 3 s

and for the mixed terms (i = 1, 2, 3; j = 4, 5, 6)

[H R [(X. - X .) - (X. - X .)(/p)] (X.- X .)/(p 2 R)ij S 1 Si 3 SJ
(5.7.3)

Now consider the situation where the vehicle and tracking station are in the

ecliptic (heliocentric X-Y) plane, with no velocity components directed out

of the plane. Clearly the information derivable from the range-rate measure-

ment for the Z-component (i = 3) of position and velocity is zero. Now while

this configuration is not usually the case, the values of the position and

velocity Z-components of both the vehicle and the station are small enough to

make the information quite small. Thus the range-rate measurement contributes

only little information for the estimation of the out-of-plane components of

the state. (Note that the information would be even less if station motion

were not considered; this further substantiates the claim set forth in

(51, 34).)
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To see how the angle measurement, C, alleviates this problem, consider

the corresponding elements of the information matrix, again for one measure-

ment and with the approximation, -- I. For the position elements (i, j =

1, 2, 3),

e

[HR-1 H] [ (XI - i X.

(X .- X.)
sxj - cos j / _ 2 sin 2

X] IRe- rl e

Here, even when the Z-component of position is zero, the corresponding infor-

mation term is, in general, non-zero. Only when

cos-1 S e -1 e=co s = cos [.3846 e j
SIRe rl IRe  -

is the information term zero. Now Z is zero, since the Earth remains in thee

ecliptic, and z is very small compared to Re - rJ. Hence the approximate

value of 5 = 900 results in a corresponding value of zero for the information

term. This value can, of course, be encountered in practice. However, for

the periods investigated in the simulation, this particular geometrical con-

figuration was not encountered. (In passing we note that the values, 0 = 0, I~,

could lead to some numerical problems due to the division by sin . However,

for the navigation star selected these values of 5 cannot occur.)

For the velocity elements, the information term, HTR-1H, is zero since

the corresponding elements of H are zero. Thus estimates of the Z-component

of velocity must rely almost solely upon the information derived from the

range rate. This dependence is manifested by errors in the out-of-plane

velocity which are sometimes as much as an order of magnitude greater than

those of the other components. However, this particular problem is partially
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alleviated by accurate estimation of the position. This is true because the

acceleration is, in part, a function of position, i.e., equation (5.:.1).

Thus accurate estimates of r keep the nominal velocity values fairly accurate.

More directly, the elements of the state transition matrix, previously assumed

to be diagonal, in fact contribute a coupling of information elements to aid

accurate estimates of the velocity.

While the previous discussion has been directed toward the information

obtainable for the Z-components of the state, very similar conditions and

explanations apply for cases where the vehicle is on or very near the X- or

Y-axes. For example, initially the vehicle is on the heliocentric X-axis.

Only one station, Madrid (JPL-61), is initially tracking. The vehicle is

almost directly overhead, hence, p 0= , and (Y - Y ) 0. Thus, only a small
S

amount of information about I is available since D /u = O. Similarly, for

these conditions, - = 0, and hence Dp/ x o yielding little information

about X. However, information is available from the star-vehicle-Earth angle,

§, which does aid the estimation of these otherwise locally* unobservable or

nearly unobservable elements. In fact, it has been found that conditions such

as these occur quite often at various times throughout the mission. The result

is that without the angle measurement, F, extremely large estimate error

values often occur.

Thus in view of the foregoing discussions, it is desirable to have

an additional or supplemental measurement type. The onboard angle, ~, appears

to be a viable candidate producing useful information to aid the orbit

determination process. One of its chief disadvantages is the high resolution

* The term local observability might be suggested for those state
elements which are observable for only a subset of the total observation set.
Thus a system could be described as locally observable if (1.3.21) holds where
the observations {y , ... , yk} form a proper subset of Yk'
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demanded to produce accurate estimates. Another disadvantage is discussed

later.

Model 0 - State Noise Covariance. A number of simulations were per-

formed using various values of the diagonal state noise covariance matrix,

U, (see sections 1.2 and 5.6). Typical results for three linearly related

values of u over a 60-day period are shown in Figure 5.13. Here the estima-

tion performance is reflected by the position error RSS for the following

values of U:

U, = I(.16 x 10 -  .166 x 10 - s .16 x 10-6) (rm/sec2 ) 2

U2 = I(.16 x 10 - 1  .166 x 10 - 9 .16 x 10-10) T  (m/sec 2 ) 2

U 3 = I(.16 x 10 - 1 2 .166 x 10-" .16 x 10-12)T (nn/s2) 2

Examining the figure, as the state noise covariance is decreased, we begin to

see divergence of the state estimate. In fact, for all cases, including that

corresponding to the largest value, u1, divergence is at least starting near

the end of the simulation period.

A particularly interesting feature is the apparent trade-off in the

values of U and the maximum estimation accuracy obtained. This is shown by

the large dips in the RSS curves at about 10 days. For the smallest value,

u3 , the RSS curve has the greatest dip; for ul the dip is smallest. An

intuitive explanation of this phenomenon is based on the following reasoning.

Initial filter operation produces estimates of greater and greater accuracy

as more observations are taken. If the value of ii is small, the error co-

variance decreases rapidly, producing more nearly optimal estimates and thus,

for a short time, more accurate estimates. However, eventually the covariance

becomes so small that it is unable to cope with the error buildup, and di-

vergence occurs. -On the other hand, for a larger U the error covariance does

not decrease as rapidly. Hence, the filter is not operating near the Optimum,
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and estimate accuracy is therefore not as good -- at least during the short

period around 10 days. However, the presence of a larger u keeps the filter

operating longer before divergence occurs.

Next note the dotted curve which corresponds to the maximum RTC, i.e..

that for Ul. Its average value is approximately 70-80 kin, a value which does

not reflect the error RSS of 300-400 km. (Although they are not shown, the

RTC's corresponding to U2 and U3 all lie below that for U1 .) This suggests

that the value of u be increased.

Such an increase produces the estimation results shown in Figures

5.14 and 5.15. The increased elements of u have the values,

qx =z = .16 x 10 - 4 (mm/sec 2 ) 2

q = .166 x 10-3 (rmn/sec)2

These figures show position and velocity RSS and RTC curves for both the

nominal acceleration error and an increased error, to be discussed later.

In Figure 5.14 the position error RSS is seen to be greater than that obtained

in Figure 5.13. However, the RTC curve is a better measure of the accuracy,

even though it does not bound the RSS curve. Further, the estimate remains

fairly stable throughout the simulation period of 60 days. This is further

supported by examining Figure 5.15. Here the solid curve represents the

velocity error RSS over the 60-day simulation period. Although there are

some fairly large error peaks during the latter 30 days, overall the velocity

error RSS appears generally to be free of divergence during this period.

Figures 5.14 and 5.15 also show the estimation performance for the

case where the thrust acceleration error is increased by a certain amount at

30 days into the mission. This increase is produced by changing to the

following acceleration error simulation values:
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y = .026175 rad

6ao = .0027 m/sec
2

This corresponds to a 50% increase in the nominal values. A plot of the

corresponding y-component of thrust acceleration error is shown in Figure

5.16. Figures 5.14 and 5.15 thus reflect the ability of the algqorithm to

handle changes in the thrust acceleration error. For the corresponding position

error RSS, the differences between the nominal and increased thrust accelera-

tion error are essentially nonexistent, and are therefore shown together as

the solid curve. The dotted curve is the RTC for both also. In Figure 5.15,

however, the velocity error RSS curves are slightly different, with the RSS

for the increased acceleration being given by the dashed curve. As expected,

the error is slightly larger than that for the nominal acceleration error

simulation. As in Figure 5.14, the dotted curve represents the velocity error

RTC for both cases. However, a curious aspect is the behavior of the RTC

curve. This is seen as a generally increasing trend from about 10 days. The

data also reflect a similar, but considerably less detectable, behavior for

the position RTC. One possible explanation for this is the fact that as the

vehicle moves farther from the Earth, the angle measurement, Ec, becomes less

sensitive to changes in position. For example, initially the spacecraft is

approximately 9.25 x 10 s km from the Earth. The standard deviation of 7

arcsec for the onboard angle measurement corresponds to an arc length at this

distance of approximately 31.4 km. By 60 days into the mission, the spacecraft

is approximately 1.53 x 10' km from the Earth; the corresponding arc length

is approximately 519 km. While this behavior could be seen more rigorously

in terms of the information matrix, the effect is clear: less information

is available from the onboard measurement angle as the distance from the

Earth is increased.
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Models 1 and 2. Figures 5.17, 5.18, and 5.19 show the estirrmation

performance for each of the other four approximating models. For these

cases, the thrust acceleration error parameters are increased to the same

values as for Model 0, above. Further, each case employed values of q as

indicated below.

Model la q x = .16 x 10- 4 (mm/sec
2 )

2

qe = .16 x 10-0 (mm/sec 3 ) 2

S= qz = .16 x 10-4 (mm/sec 2 ) 2

Model lb qe = .5 10- 14 (mm/sec 3) 2

qa = q x 10-35 se-4

Model 2a q x = qz = .16 x 10 - 4 (m m/sec
2 ) 2

S= .3 x 10 - 2 4 (mm/se 4 ) 2

qx = qz = .16 x 10-4 (mm/sec 2 ) 2

Model 2b q = 10-22 (nn/sec4 ) 2

q = .5 x 10-30 sec-6

Figure 5.17 shows the position error RSS for each of the model con-

figurations. As expected, the estimation accuracy generally is improved over

that for Model 0. Most remarkable is the accuracy with which Model 2b yields

performance estimates. This is represented by the solid curve, and corresponds

to an average position RSS of about .60 km (time > 10 days). This approaches

a factor of 5 reduction in the RSS values for the other models. It is

important to remember, however, that Model 2b corresponds to the correct

structure of the actual thrust acceleration error magnitude, and thus one

would expect superior performance. We remark that Model 2b is not quite
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the exact structure for the y-component of acceleration error, however.

This is due, of course, to the fact that the thrust acceleration error vector

deviates from its nominal orientation so that Model 2b is attempting to

approximate the y-axis projection of the thrust acceleration. Further, we

have employed a differential form, and consequently truncation errors in the

numerical integration algorithm contribute what appears to the estimation

equations to be a form.of model error. It is these aspects which require the

use of a small state noise covariance matrix (also see (11) ).

The next most accurate performance is that provided by Model 2a,

simple linear form. As shown by the alternately dot-dashed curve, the average

position RSS is approximately 300 km (for time > 10 days).

The two first order models, la and Ib, produced acceptable estimation

accuracy, but not as good as expected. In fact, Model lb produced a position

RSS curve of about 450 km, some 80 km greater than that for Model la. One

possible reason for this is that too small a value for one or a number of

the state noise covariance elements was used. This suggestion is supported

by the fact that the associated error RTC data indicated an approximate steady

state value of 280 km, a value somewhat below the actual RSS curve. In all

cases a considerable number of runs were made for each model to obtain appro-

priate values for the state noise covariance matrix elements. This process is

tedious, time-consuming, and expensive, and for this reason, it was decided,.

following some effort, not to pursue this "tuning" process further. Clearly,

one would expect that more accurate results could be obtained by varying the

q, values until the position error RTC and RSS become approximately the same.

For each of the other models, the indicated values of q resulted in

RTC's which coincided with or exceeded their respective RSS data. The niodel

producing an error RTC greater than its RSS data was Model 2b. In particular



the RTC data indicated an average value of approximately 295 km. Presumably

further tuning of the filter would result in even greater accuracy for Model

2b. For the reasons cited above, this was not done.

Figure 5.18 shows the velocity error RSS curves for each of the models.

Here the performance appears to be nearly the same for each. However, these

curves are in general more erratic than in Figure 5.19. In particular, toward

the end of the simulation interval the effects of the increased thrust accel-

eration error are rather pronounced. In spite of this, there does not seem

to be any indication of a tendency toward divergence; hence, for all these

models, the estimates are stable over the entire interval. Further, in all

cases the corresponding RTC data bounded or coincided with the RSS data.

Figure 5.19 shows the estimates of the thrust acceleration y-component

for each model. These estimates are those which resulted in the estimation

performances of Figures 5.17 and 5.18. Each estimated acceleration curve

represented by the heavy, solid line is identified with the corresponding

model number. The estimated curves are superimposed over a lighter curve,

the true y-component of thrust acceleration error. As seen from the figure,

all four models perform admirably in representing this component of accel-

eration error. Particularly notable is the fact that all methods adapt to

the increase in the acceleration error at 30 days. Now, the plots for Models

la and 2b do not appear to be very different (although the position and

velocity RSS's in Figures 5.17 and 5.18 indicate otherwise). On the other

hand consider the respective curves for Models lb and 2a. Close examination

of the Model lb curve reveals that a number of the actual error peaks are not

matched by the approximating curve. This is possibly due to a smaller than

necessary state noise covariance matrix and presumably the estimates would

be improved if this matrix were increased in value. This further supports



the suggested explanation why Model lb yields the largest position error: PSS.

Next, examining the Model 2a curve reveals that the estimated values near

the error peaks are larger than the actual error (the breaks in the approxi-

mating curve indicate where the values extend outside the limits of the

graph). In view of the previous suggestion concerning Model lb that the

state noise covariance is too small, the implication here is that the cor-

responding covariance is too large. In this case, however, it has been found

that the position error RTC data coincides very closely with the RSS curve.

Further, the fact that the Model 2b simulation yielded RTC values which were

well above its RSS values, tends' to discount this explanation for over-

estimating the peaks. The actual reason for this behavior is not clear. Two

possible explanations are offered. First, it is possible that generally over-

estimating the acceleration error simply results in orbit determination

performance which is more accurate than that resulting from under-estimating

the error. Second, the plots shown are generated using approximately every

fourteenth or fifteenth point. Thus many values occur which are not shown,

and on the average, it is possible that considerably better estimates of the

error are obtained for Model 2a than for Model lb.

In view of the foregoing discussions, it appears that generally the

second order models, 2a and 2b, are superior in representing thrust accel-

eration errors of the type encountered in the simulations. Further, the

importance of exact modeling to the maximum extent practical is clearly

illustrated by the exceptional performance of Model 2b.

Sequential Estimation of the State Noise Covariance. We have seen

rather accurate performance using an a priori constant state noise covariance

matrix associated with each of the models. However, in view of the many

numerical simulations which invariably must be performed in order to "tune"
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the state (vector) filter, a natural alternative is to employ the sequential

state noise covariance or Q-filter to aid in this process. This has been

quite successful as we now proceed to show.

First, some comments dealing with general performance are in order.

Initially, numerous runs were made to investigate the effectiveness of the

sequential Q-filter. In these cases operation of both the ordinary state

filter and the Q-filter was simultaneously initiated. Results were obtained

for all models and were less than satisfactory. In all of these cases, the

performance was worse than that obtained by simple tuning of the state filter

using a pAuioL constant values of Q. Attempts were made to improve the

performance of the Q-filter by employing different a ptriori values of both

Q and the Q-error covariance, S; using different constant values of the

observation residual error variance, T; and using the "sliding window" modi-

fication to the T-estimator, equation (3.6.36). These attempts met with little

success. After exhausting such approaches, a re-examination of the strategy

for employing both the state and Q-filters was made. This revealed that

possibly the initial transient operation of the state filter was having a

detrimental effect upon the Q-filter performance. To investigate this, runs

were made in which in which initiation of the Q-filter operation was post-

poned for the transient period of state filter operation, approximately 5

days. The results were highly encouraging.

To illustrate this strategy, cases for Models lb and 2b were run.

Recall from previous discussion that the results obtained in Figures 5.17 -

5.19 suggested that the state noise covariance values appeared to be too small

and too large, respectively, for these models. For this reason, it was felt

that the Q-filter could improve the values of Q, and hence the estimation

performance. For both models, simulations were run for 30 days using the
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initial data given in Table 5.1. In addition, a ptioti values of Q were

taken to be those of U corresponding to the results obtained in Figures 5.17 -

5.19* (see page 198). The initial values of the Q error covariance matrix,

S, were selected to make so diagonal. The so elements corresponding to

diagonal elements of Q were chosen approximately as the square of these a

pAioh'i ( values. The So elements corresponding to off-diagonal or correlation

terms of 2 were taken (approximately) as the product of the a p~orti diagonal

Q elements corresponding to the row and column of the correlation term. Thus,

at t = 0,

sii qjj , Skk = qn qnn (5.7.5)

Taking this approach was an arbitrary choice. However, it was found that

relatively accurate values for so are necessary, and the rule-of-thumb given

by (5.6.5) was found to be a viable approach. In view of this, the a pI.o'.i

S values are given in Table 5.2 for each of the two b models.

Because of the extremely small values of many of the s.., different

units are used in carrying out these simulations, namely, millions of meters

and millions of seconds. This is done in order to avoid numerical difficulties.

In order to test the adaptability of the Q filter, increased acceleration

errors were simulated at 15 days. This was done by again increasing y and

a0o by 50% to

Y = .026175 rad

6a, = .0027 m/sec 2

In determining the observation residual error variance, T, the sliding window

modification, equation (3.6.36) was used with the small a ptioit value of

* Recall the discussion in section 5.5 associated -with the computation
of r. Because r itself is required, equation (1.2.30) is used, and hence
we assume, approximately, Q = U.
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Diagonal Corresponding Variance Values for

S Element Q Element Model lb Model 2b

sl q11 = qx 10-10 (n/sec2)4 10-10 (rmn/eC2)4

S22 q12 10 - 1 0 (mm/se 2 ) 10 - 10 (7mm/se:'L?2)f

533 q13 10- 1 9 (mm 2/sec 5 
2 10-

27 (,s 3)4

544 q14  10- 40 (mm/sec ) 2 10 (;I5 /~; c5 ) 2

S5 5  q22 = qz 10- (mm/sec 2 ) 4  10-10 (7n/sec 2 )4

866 q23 10- 19 (mm 2/sec 5 ) 2  10-27 (pM/sec 3 ) 4

s77 q24 10 - 40 (mm/sec 4 ) 2  10 - 35 (mm/sec 5) 2

Se q33 = qe, qg 10-28 (mm/se 3 ) 4  10-4' (1nM/sec 4 ) 4

s99 q 3 4 10 - 4 9 (mm/sec 5 ) 2  10- 52 ( 7m/sec
7 ) 2

slc io q44 T = qb 5 10-7 0 sec-8  10- sc- 2

Table 5.2 A Ptioi s Values
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To = 10-14 (mm/sec) . Twenty residuals were used as the residual batch size,

i.e., v = 20, in (,.G.;G). Finally, in carrying out the simulations, the

(2 filter was not operated until the fifth day of mission time in order to

avoid the transient effects of state filter operation.

Figure 5.20 shows the position RSS and RTC for both b models: 5.20a

for Model Ib, and 5.20b for Model 2b. In both cases the performance is quite

good. Figure 5.20a shows a particularly significant increase in performance

over that shown in Figure 5.17. The RSS curve has been lowered to an approxi-

mate mean of 125 km, a considerable improvement over the previous 450 km of

Figure 5.17. Further, the RTC curve is more representative of the actual

RSS error, although it appears to be slightly low. For Model 2b there does

not seem to be any noticeable improvement in the estimate as reflected in the

RSS curve. Both here and in Figure 5.17 the RSS has a mean of around 60 kin.

However, the corresponding position error RTC is now an accurate representa-

tion of the position error, and adequately bounds the actual error RSS. Note

that for both models the filters easily handle the 50% acceleration error

increase at 15 days.

Results obtained for the velocities are shown in Figures 5.21a and

5.21b. The performance is comparable to that shown in Figure 5.18. However,

for Model lb the velocity error RSS curve has some peaks which are larger

than those of Figure 5.18b. These peaks seem to be decreasing in amplitude

after the largest one at 21 days, and therefore do not suggest divergence.

However, the RTC is somewhat lower than the RSS curve, and it is possible that

divergence may appear at some later time. As before, the results for Model

2b are particularly good, although here also there is a large error peak at

about 21 days. Again the RSS decreases, and, except for the peak, the RTC

mean of about .2 m/sec adequately reflects the true error.
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It is entirely possible that the peaks in the error RSS curves may

be due to operation of the filters as they attempt to adapt to the accel-

eration error. Figures 5.22a and 5.22b suggest this possibility as they show

the true and approximated thrust error accelerations. In particular, Figure

5.22a shows that the Model lb error approximation is slightly out of phase

with the true error. Further, it is smoother and does not reflect the more

erratic behavior of the actual thrust acceleration error. On the other hand,

Model 2b does a reasonably good job of approximating the true error. In

either case there are rapid alternations at the true error maxima and minima

which are difficult to approximate and which are therefore quite capable of

resulting in the peaks in the position and velocity error RSS'

Figures 5.23 and 5.24 are plots of appropriate RTC values for the

state noise covariances. These figures illustrate quite well the expected

changes in the state noise covariance values. Figures 5.23a and 5.23b show

the respective Model lb and 2a state noise covariance RTC curves for the

orbital frame x-z components of error. Note that both curves reflect the

constant a ptioui values. At 5 days there is a rapid ineea c. in the RTC

value for Model lb and a decteze in the RTC for Model 2b. This behavior is

exactly that expected to improve the position and velocity RSS'. Also notable

is the increase in these Q estimates at about 15 days, corresponding to the

increased thrust acceleration error. Thus the ( filter is actually adapting

its estimates to account for these error increases. This behavior can also

be seen in Figures 5.24. Figure 5.24a shows the state noise covariance RTC,

v-, corresponding to the noise term in the approximating differential

equation (5.5.5). Likewise, Figure 5.24b shows the covariance RTC, V---,

corresponding to the noise term in (5.5.10). We again see the constant a

piott Q values for both cases during the first 5 days of the mission. At
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this point changes occur with e increasing and v decreasing as expected.

Again at 15 days both estimates begin growing as the Q filter attempts to

account for the increased model error.

For the model parameters, a and , the corresponding state noise

covariance estimates retained their a ptioaLi values with no discernible

changes as the estimation proceeded. This is attributed to the very small

a pAioi values of so0 1o corresponding to these parameters (Table 5.2).

Recall from Chapter 4 that too large a value of Q for the model parameter, o,

resulted in c's following the observations, thus destroying the correlation

effects. In view of this, the suggestion is made that it is better, within

parexic bounds, to let such parameters tend more to their constant values.

This strategy is further motivated by the initial results obtained when both

the state and Q estimations were initiated simultaneously. Thus initial values

of S normally should be chosen as nearly representative of the true uncertain-

ties in Q as possible. An interesting aspect of the (Q filter perfonrmance was

noted in using constant values of the residual variance, T2, as opposed to

estimating them via (3.6.36). Results indicated that variations in ,i' by as

much as three orders of magnitude produced essentially no overall change in

estimation accuracy from that obtained in the foregoing cases. Generally,

however, it is recommended that T be estimated, thus eliminating additional

a p&io i guesswork.

The main disadvantage of the Q filter appears to be the increased

demand upon computation time. This can be severe, particularly for more

complex models. For example, the two models treated here required nearly

50% more execution time than that without the sequential Q estimator. This

aspect is substantial motivation for keeping the approximation structures

relatively simple.
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As a result of the application of the sequential Q estimator, we

have shown that it is possible to improve the knowledge and confidence in

the state estimates. It is most important, however, that the Q filter opera-

tion be initiated after the transient period of the state filter is passed.

5.7 Summary and Conclusions

In this chapter we have investigated the performance of model error

and state noise covariance estimation algorithms as applied to the orbit

determination problem of an SEP spacecraft subject to anomalies in the thrust

program. We have established that some supplementary measurement type is

useful in addition to the normal radar range rate observations. The use of

the onboard star-vehicle-Earth angle, while providing such information, suffers

two main disadvantages. First, high measurement accuracies are necessary to

make the technique useful. Second, as the distance of the vehicle to the

Earth increases, the measurement angle.uncertainties. translate into larger

position uncertainties. This latter problem suggests some alternative approach,

such as switching to the target body (in this case, the asteroid) as the

approach phase is entered. This would provide the reverse effect with greater

accuracy being obtained as the vehicle approaches the target. Another alter-

native is to employ a different measurement type. A potential candidate is

quasi, very long baseline interferometry (QVLBI). This has been shown to

offer greatly improved observation accuracies over that obtained with con-

ventional range rate tracking (52), although additional development is

required to make it practical.

The use of a state noise covariance matrix (Model 0) to maintain

filter operation has been shown to be effective in preventing divergence of

the estimates, and can yield accuracies of less than 500 km position error

RSS. In general, the performance can be improved using any of the other
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models investigated, although the second order models (2a and 2b) appear to

offer greater accuracy and stability of the estimates. In particular, the

superior performance (RSS - 70 km) of Model 2b, being the closest in structure

to the actual error, confirms the importance of accurate modeling to the

maximum extent practical.

In all cases, a state noise covariance matrix is required in order

to prevent filter saturation and subsequent divergence. However, with the

estimation of the model errors, the state noise, and therefore the error

covariances, are smaller than without model error estimation.

Application of the sequential Q estimator has been found to be a

workable approach for estimating unknown state noise covariances. For the

error approximation Model Ib, the Q filter greatly improved the RSS error,

decreasing it from 450 km to about 120 km. The state RTC in both cases has

been shown to be an adequate reflection of the confidence in the estimates,

particularly in the case of Model 2b, where the RTC practically bounds the

RSS. Of paramount importance in employing the state and Q filters is to

insure that Q filter operation is not initiated until after the transient

period of state filter operation. A potential problem is that of the choice

of units for the dual state and Q filter computations. As reflected in

Table 5.2, very small numerical values can be encountered for the Q error

covariance matrix, s, and these must be compatible with the computational

capabilities of the particular computer to be employed. Further, making the

a priori S too large can result in estimates following the observation

residuals, thus at least delaying accurate convergence of the estimates.

Finally, the sequential Q estimator suffers the disadvantages of requiring

up to 50% more computation time over that for just the state filter with a

pAioni constant Q values.
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In sum, we have shown that the thrust acceleration errors which,

unchecked, produce extreme divergence of the state estimates, can be very

adequately controlled. The techniques employed not only increase the

navigation accuracy, but also knowledge of the actual dynamic model.



Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions

This dissertation has been concerned with solving the fundamental

problem of dynamic modeling errors in classical Kalman filtering. The very

detrimental effects of such errors have been illustrated in both algebraic

and numerical terms through the examples of the rendezvous and SEP vehicle

estimation problems. In approaching the model error problem, various aspects

and properties of the filtering elements have been presented, e.g., infor-

mation, observability, etc., thus providing a fundamental base for the

investigation. A number of non-adaptive algorithms have been presented

which attempt to account for errors in the dynamic model. These range from

the optimal approaches of employing a state noise covariance matrix and the

more complex limited memory filter, to the suboptimal techniques of age-

weighting, additive gain term, and gain scaling modifications. In all cases,

these approaches compensate for the model error by simply keeping the gain

at a high enough value to prevent saturation, and thus allow continued filter

operation. There is, however, a certain minimum estimation accuracy obtainable,

reflected in part by the steady state value of the error covariance, and

determined by the corresponding filter parameters.

Except for the limited memory filter, adaptive forms of each of these

error compensation techniques have been presented. Using the adaptive state

noise covariance estimation algorithm due to Jazwinski, adaptive forms were

derived for each of the other methods.
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The powerful technique of adaptively estimating modeling errors has

been presented, along with discussions of the assumed functional form or

mathematical structure of these errors. A unifying derivation has been

presented resulting in a relatively flexible structure suggested as a can-

didate function for use in model error compensation. Additionally, a new

algorithm for sequentially estimating state noise covariances has been

developed, based upon the ordinary Kalman filtering algorithm. In view of

the non-negative definite property of the state noise covariance, and certain

other assumptions, the algorithm produces constrained minimum variance

estimates.

In applying the techniques to the rendezvous and SEP estimation

problems, numerical results have offered some interesting conclusions. From

the rendezvous problem, the performance of the ordinary gain scaling algo-

rithm (b = constant) clearly indicates that this method is unacceptable to

counter the effect of unbounded model errors. This is true for both the

adaptive and non-adaptive forms. In their non-adaptive forms, the other

algorithms have been shown to produce equivalent steady state performance

when appropriate filter parameter values are employed. This is further

substantiated by the adaptive formulations for which the performances are

nearly the same. In fact, Jazwinski's state noise covariance estimation and

the adaptive age-weighting algorithms produce identical performance. Further,

the modified gain scaling and additive gain term methods in their adaptive

forms also yield identical performance. Between the two sets, the former

algorithms appear to offer slightly greater confidence in their estimates.

The reason for this is not clear. However, one clue is that the former has

filter parameters (Q and s) which can take on infinitely large values; the

latter algorithms have parameters (a and B) ranging between zero and one.
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In view of this, the conclusion suggested is that the differences may be due

to numerical sensitivities, a condition brought on by finite computer word

length. Thus, in the latter case, considerably more significant figures

are required to achieve the same results as for Q and s.

Results obtained for the estimation of model errors, as applied to

the rendezvous problem, clearly indicate the superior performance of this

method. This is to be expected, since it is the only method which actually

attempts to improve knowledge of the dynamic model. Coupled with an appro-

priately determined state noise covariance matrix, this technique is thus

the best approach to the model error problem. For this reason, this approach

was taken for investigating the solar electric propulsion mission. The

accuracy of this approach in the SEP orbit determination study is demonstrated

by the performance for the various assumed model structures. In general,

higher order models are to be preferred since their structure tends to make

them more adaptable to complex, as well as simple, error forms. This is

substantiated by the more accurate estimation performance of the second order

models. In view of the structure of the SEP acceleration error, and the

rather remarkable performance of Model 2b, the importance of accurate but

parexic modeling cannot be under-emphasized.

The sequential estimator for the state noise covariance matrix can

be effective in maintaining operation of the Kalman filter, both with and

without the formulation for estimating model errors, although it is rather

demanding of computation time. For the rendezvous problem, the estimates

of the state noise covariance were found to be somewhat erratic, indicating

a rather acute sensitivity to the residuals. In the SEP mission simulation,

the strategy of avoiding Q filter operation during the state filter transient

periods proved to be the key to success in this application. Thus, performance
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in the rendezvous problem could probably be improved using this philosophy.

Further, in the rendezvous application, the T estimation utilized all a

posteAloit E residuals, thus including the effects of transient state filter

operation. For the SEP mission, the modification of the r estimator limiting

it to a batch of 20 residuals appeared to be a more viable approach. In this

configuration the Q filter operating in the state filter, post-transient

period was found to be quite effective in improving state noise covariance

values for Models Ib and 2b. The success obtained with this strate!y suggests

that the dual state-Q filter algorithm can be a useful estimation tool.

6.2 Recommendations for Further Investigation

One of the most apparent questions which remains unanswered is that

of performance of the suboptimal adaptive and non-adaptive algorithiis for the

case of vector state variables. Some reflection will reveal that the algo-

rithms could not be expected to be equivalenced in the same sense as for the

scalar case, viz., the rendezvous problem. For example, the age-weighting

algorithm simply multiplies the error covariance by a scalar, thus scaling

each element by the same amount. The additive gain term, however, adds

different terms of varying value to the error covariance.

The additive gain term algorithm suffers a disadvantage in that the

added term,

3 R H /H H

affects the gain and error covariance only for those state elements which

appear explicitly in the observation state relationship. As indicated in

section 2.2, the gain scaling modification using

H P HT
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produces the gain expression of (2.2.15) which differs from that for the

additive gain (2.3.2) by the presence of the error covariance, T. As long

as p is of full rank, the former gain,

= (P HT + R PH /HP T)( T + R)

is altered for aUf terms in the state vector, regardless of their explicit

appearance or absence in the measurement equation. Thus the original additive

gain term cannot be successfully applied to, say, the model error estimation

algorithm; the modified gain (2.2.15) can. In light of the fact that for the

scalar problem the P divides out, this aspect was not investigated in the

rendezvous problem. However, any vector problem (say, the rendezvous problem

where range, p, is included with range rate, p, to form a 2 vector) could be

used to investigate this aspect.

Similar conditions occur for Jazwinski's Q estimation algorithm. Here

the pseudo inverse,

# AT T HT

A AAT H Fr T HT

usually suffers the same malady as the additive gain term. By employing a

different pseudo inverse, say,

# _ P TE)A T

state elements not in the measurement equation will still have corresponding

non-zero state noise covariance elements.

In this study, the common structure given by the function of equation

(3.4.6) has only been suggested for use in estimating model errors. It should

be particularly interesting to investigate the ability of this common structure

to adapt to different model error functions, both bounded and unbounded.
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Considerable study of the sequential state noise estimator remains

to be done, particularly with regard to sensitivity analyses. Some sensi-

tivities have been examined with regard to various a ptiuoA values of S and

T. However, additional study is warranted.

Finally, we reiterate that some of the algorithms may be combined to

obtain hybrid techniques. The approaches here are many. One possibility

is to apply the suggested modified gain scaling technique (section 2.2,

with the gain given by (2.2.15)) to the model error estimation technique.

This approach, while suboptimal, would require only the selection of the

filter parameter, 3, rather than three or more state noise covariance elements.

Further, the adaptive form for estimating P could be employed, thereby making

the algorithm completely adaptive.

Our concern in this study has been to investigate concepts and

techniques for alleviating the dynamic model error problem in linear filtering.

Many approaches have been discussed and analyzed, and advantages and dis-

advantages presented. The filtering and estimation process -- even in its most

sophisticated forms -- can never be any better than the mathematical model

representing the dynamic process. In the final analysis, then, there can be

no substitute for accurate modeling, whether analytically determined or

adaptively estimated.



Appendix A

MATRIX INVERSION LEMMA (SCHUR IDENTITY)

Define the positive definite matrix, X, as

X E (AT B A + C)-1 (.1)

Taken the inverse and pre-multiply by x to get

I = X AT B A + X C (.

Post-multiply by C1 :

C- 1 = X A T B A C- 1 + X (A1.3)

or

X = C- 1 - X AT B A C- 1

Post-multiply (A.3) by AT B to obtain the following sequence:

C- 1 A T B = X AT B A C- 1 A T B + X AT B

SXA T B(A C- 1 AT B + I)

= X AT B(A C-1 AT + B- 1 ) B

Post-multiply by B 1 :

C- 1 AT = X AT B(A C- 1 AT + B- 1 )

or

XA B = C- 1 A (A C- A + B-1 -1

Substitute (A.4) into (A.5) and solve for X, thus obtaining an expression

equivalent to (A.1)

X = C- - C- AT (A C-1 AT + B-1 ) A C-1 (A.6)
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Appendix B

A AND B MATRIX ELEMENTS

A Matrix: Partition the A matrix into sub-matrices as follows:

0 I 0

A = A21 0 A23

0 0 A33

These elements are given as

I = 3 x 3 identity matrix

A 2 1 = [a. ] ; i = 4, 5, 6; j = 1, 2, 3

A2 3 = [aij] ; i = 4, 5, 6; j = 7, 8, 9

A 33 = [aij] ; i, j = 7, 8, 9

where

a41 =u 3X 2  + x
Ir13  1 r I p13

a42 = 1J 3X Y 1 2 e
a rl3  L- p' Ip2 J2

__ _ X 1a43 [3XZ

Irpl IP 2
as- -- 3 + 1 y2 e]

a523y2 XY

Ir13  L r2 12

a_ = 11 3YZ
Irl LIr 12J
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a62  [ 3ZY1

(6 ]3 32 11
Ir 1 3 2Ir12

a4 7 = -Y/Ipj , a5 7 = X/IP a.. = 0 for other i, ,
13 1

e is the estimated thrust acceleration error, and Ip = ( 2 + 2)

Model la: a. = 0 , i,j = 7, 8, 9
13

Model ib: a 7 7 = -a , a78 = -e , a.. = 0 for other i,j

Model 2a: a78 = 1 , a.. = 0 for other i,j

Model 2b: a78 = 1 , a87 = - , a89 = -e , a.. = 0 for other i,j

For Model 0, e = 0 in A2 1, and A2 3 = A33 = 0.

B Matrix: The B matrix is defined in partitioned form as

B = 0 M 0

0 0 I

where

[X/IPI -Y/Ipl 0
M= Y/Ipf X/IpI 0

Lo o I

which is the transformation matrix from the orbital frame to the heliocentric

frame.



Appendix C

OBSERVATION - STATE RELATION PARTIAL DERIVATIVES (H MATRIX)

Range Rate Measurements, p:

= [( - ) - (X. - X .) (p/p)] /p

X. i /p i , 2, 3

1

X. sl
1

where x. and x. are the heliocentric position and velocity components of the1 1

vehicle; and x i and x are the heliocentric position and velocity components

of the tracking station. The derivatives with respect to the other state

elements (depending upon the approximating model) are zero.

Star-Vehicle-Earth Angle, C:

(X - X.)

- cos e  J /(JRe - r 2 sin ), i = 1, 2, 3

where the Xei are the heliocentric position components of the Earth; the sxi

are the navigation star unit vector heliocentric components; R and r are
e

the Earth and vehicle heliocentric position vectors. The rest of the partial

derivatives are zero.
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Appendix D

THE ERGODIC PROCESS

In a process which is ergodic in the mean, theory predicts 68.27%

for normally distributed errors (46, 98). If the process is ergodic in the

mean, the time sample averages are representative of the ensemble sample

averages, that is averaging more and more values along the time axis results

in convergence to the ensemble mean. A necessary and sufficient condition

that a process, x(t), o < t < -, be ergodic in the mean is that it be wide-

sense or weakly stationary, and that

T

Zim Ef{[ x(t) - p12} d t = 0T 0

or in the discrete case,

N-1
Zim - E{[x - p] 2 } = 0
N- N i=1

See, for example, (46, 166-167). The assumption of ergodicity in the mean for

the range rate error process, p(t), is reasonable as long as the process is

stationary and the time average converges to E{p} = 0, a condition guaranteed

if the limit equations above are fulfilled. In our investigation, this is not

strictly the case; however, for short time periods it is approximately true.

Further, for a given mean and covariance, the Gaussian distribution represents

the maximum uncertainty, entropy, (47, 613). Thus the comparison of the time

sample with theoretical normal (Gaussian) distribution limits is reasonable

as long as the ergodicity assumption is justifiable.
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